

The University of British Columbia Dept. of Mining and Mineral Process Engineering Dept. of Chemical Engineering

Water Covers to Wetlands: Opportunities and Constraints

Jennifer Hinton Al Hodaly Marcello Veiga Susan Baldwin

Outline of Discussion

- Tailings Water Covers:
 - Key Mechanisms
 - Current Closure Options
- Natural and Constructed Wetlands

 Fundamental Principles
- Water Covers to Wetlands

 Opportunities and Limitations
- Conclusions and Recommendations

Typical Tailings Impoundment

Tailings Water Cover

Tailings Water Covers

• Chemical Stability

- Low O2 Diffusion \downarrow ARD Potential
- Oxidation Potential: aeration, tailings resuspension, GW, waste composition, etc...

• Water Retention Dams:

- Typically cross-valley construction
- Require long-term monitoring and maintenance
- Water Level Maintenance:
 - Precip/Evap, SW/GW Inflow and Outflow, Seepage
 - Require Spillways for Runoff

Wetlands: A Reclamation Alternative

- The Value of Wetlands
 - Habitat Restoration or Replacement
 - Aesthetically Appealing
 - Wave, erosion, and flood control
 - Inexpensive Pollution Treatment or Prevention
- Can be Highly Effective for ARD Treatment *e.g. West Virginia Coal Mine*
 - $\text{ pH } 3.0 \rightarrow 5.5$
 - Sulfate 250 mg/L \rightarrow 10 mg/L
 - Iron 50 mg/L \rightarrow 2 mg/L

Metals and Wetlands

Three Pathways for Metal Retention

- Direct Uptake by Plants.
- Complexation with wetland matrix.
- Chemical/Microbiological Oxidation or Reduction.

Aerobic Wetlands

- Large SA
- Horizontal flow
- Wetland vegetation
- Best for alkaline drainage
- Efficient when pH >5.5
- Typical water depth:
 6 to 18 inches

Anaerobic Wetlands

- Large pond
- Organic substrate (12-24 inches)
- Horizontal Flow within substrate
- Planted with emergent vegetation

Constructed Wetland Design

Some Design Principles...

- Do not overengineer mimic natural systems
- Utilize natural energies (e.g. streams)
- Design for minimum maintenance
- Design to Fulfill Multiple Goals
 - Water treatment

- Replacement of similar habitat

– Wildlife habitat

- etc..

<u>Key Variables</u>

• Hydrology

- Hydraulic Loading, Basin Depth and Geometry, Residence Time

- Metal Loading Rate
- Substrate/Soils

Constructed Wetland Design

Performance Evaluation...

- Design Objectives
- Survival Potential

Consider system changes in:

- temperature
- water chemistry
- nutrient and trace metal conc

- water levels and flow rates
- metals and sediment loadings
- micro-organisms

Short term water treatment promising - but little long-term data

Tailings Water Covers

During or Post Operation

A Water Cover to a Wetland

Post Operation

Wetland Issues (cont...)

• Hydroxides:

- Fe, Mn Hydroxide limited by volume of material produced
- May dissolve in presence of organic acids (release coprecipitated metals)
- Uptake of Metals by Biota
 - Wetlands biodiversity desirable, favoured habitat for birds
 - Organic-acid associated metals may be transported downstream
 - *How to limit interaction with tailings?*

Wetland Plants

• First Plants:

- Select based on Local Conditions and Tolerance
- Polycultures may be more effective than Monocultures
- Typha latfolia common cattails
 - readily available

- tolerant

- easily transplanted

- low accumulation

• Field Study on High S Tailings (Griffiths, 1988):

- Cattails transplanted onto tailings demonstrated 200% population density increase after one year
- Some planted seed germination (comparatively little success)
- decreased sulfate, Fe, Cu, Ni; increased pH

Other Issues – Mercury

Bioaccumulation and Biomagnification

After Veiga et al. (1999)

Mercury Methylation

Methylation Sites:

- Sediments
- Particle surfaces
- Root systems of certain plants
- Within organism intestines

Numerous Methylating Bacteria: SRBs important

• Natural Organic Acids (humic and fulvic acids)

- *Hg-organic complexes important to bioavailability, mobility*

– Methyl-group donors (abiotic and biotic methylation possible)

- Potential for intestinal methylation of Hg-organic complexes?

Mercury and Wetlands

Three Pathways for Biotic Hg Methylation

- Plants incorporate Hg, degrade.
- Hg complexed with organic acids.
- Direct HgS^o or Hg(OH)₂ uptake by microorganisms.

Other Issues - Selenium

- Biomagnifies up trophic levels
- Selenate (SeO₄²⁻)or Selenite (SeO₃²⁻) bioavailable:
 - Dissolved or adsorbed to clay/HFMO
 - Uptake by aquatic organisms or rooted plants
 - Selenate, selenite predominant forms in wetlands
- Why a concern for wetlands?
 - Significant potential to enter food chain:
 - Long residence time
 - Weakly adsorbed in sediments, easily taken up by plants
 - A fine line between micro-nutrient and toxicant

<u>Opportunities</u>

- An alternative reclamation option
- Wave and erosion control
- ARD Prevention maintained anaerobic conditions

<u>Constraints</u>

- Impoundment characteristics (substrate, water depth, etc..)
- Potential mobility, bioavailability of metals associated with organic acids
- Metal uptake by biota
- Long-term viability of wetlands

Tools to Evaluate this Option must be developed

Recommendations

Further Study...

- Effects of various amendments (e.g. gypsum) on metals partitioning
- Potential for anaerobic wetlands to exacerbate dissolution of metals co-precipitated with hydroxides
- Bioavailability of metals associated with organics
- Uptake of metals from tailings by wetland plants

