Britannia Mine Remediation Project Project Overview 9th Annual ML/ARD Workshop December 4, 2002 Gerry O'Hara, Project Manager Golder Associates Ltd

Plant - Section

Britannia Mine Remediation Project Overview - Presentation Outline

- Environmental problems at Britannia
- Province's remedial concept
- Summary of work completed/ongoing
- Project status and schedule

- Britannia Mine often cited as the largest point source metal pollution source in North America discharging to a marine environment
- Impact to aquatic life in Howe Sound and local waterways (eg. Britannia Creek, Jane Creek)
- Naturally occurring metal sulphide orebody which has been exposed to air and water during (and subsequent to) seventy years of mining

Mine History

- 1905 mine began production
- 1920s –largest producing copper mine in the British Commonwealth
- 1974 Mine owners ordered to collect and treat ARD discharge
- 1974 Anaconda Canada Ltd. closed mine
- Post 1974:
 - Plug installed in 4100 Level flow control
 - Dam installed in 2200 Level (later failed)
 - ARD discharge via 'deep outfall'
 - Plug installed in 2200 Level divert flow to 4100 Level

Why Now?

- On April 12, 2001 the Province and historical PRPs reach agreement indemnifying the historical PRPs in exchange for \$30 million
- The settlement requires the \$30 million be maintained in a trust fund
- Fund may only be spent on environmental remediation at the mine
- Funds to be committed within 5 years

3D Cutaway of Britannia Mine

Summary of Environmental Problems

- Metals contaminated acidic (pH ~3) mine water from:
 - 2200 Level portal (now diverted to 4100 Level)
 - 4100 Level portal (deep discharge to Howe Sound via 4150 sub-level)
 - Other (minor discharges, e.g. seeps and other portals)
- Other contamination sources:
 - Mine infrastructure ('Fan Area & 'Additional Areas') e.g.
 - Processing/storage areas
 - Waste rock piles, launders, sediment ponds
 - Metals contaminated sediments in Howe Sound

South 'Fan Area', Britannia Beach

Remediation Project Objectives

- "Reduce environmental impact to fisheries....resulting from water and sediments originating from the mine site, by meeting site-specific risk-based provincial and federal requirements,
- Construct a water treatment plant and other works to treat drainages to meet site-specific provincial and federal requirements,
- Reduce contamination-related human health risks on, and emanating from, the mine site by meeting site-specific risk-based provincial requirements, and
- Consider future sustainable development, compatible with land use designations in SLRD's OCP"

Province's Remedial Concept

- (1) Collecting all ARD
- (2) Treating the ARD
- (3) Controlling the discharge of contaminated groundwater
- (4) Reducing or preventing the formation of ARD by covering sulphide mineralization with soils and/or re-routing uncontaminated surface waters away from underground mine workings, and
- (5) Risk assessment/in-situ management is anticipated for contaminated sediments and soils at certain locations

Assessment of contaminated waste rock and groundwater

Mill

(1) Collection: Plug 2200 portal 4) Prevention:

diversion and/or cap

(2) Treatment: mine drainage and groundwater

Howe Sound

(3) Control of contaminated groundwater Assessment of contaminated Sediments (Environment Canada)

Project Components

- Golder Associates hired by Province in August, 2001 as Remediation Project Manager
- Technical contractors hired in fall, 2001:
 - Mining & Hydrogeology (SRK)
 - Water Treatment Plant (CH2MHill, AMEC & CEMI)
 - Contaminated Sites (URS)
 - Flood Risk Assessment (WMC)

Remediation Process

Project Management (Golder)

Ministry of Vater, Land and

Mining and Hydrogeology Study - SRK

Evaluate mine as storage reservoir:

- Safety assessment & rehabilitation program
- Hydrology & hydrogeology studies¹
- Stability assessment of 4100 Level plug
- Tests to assess storage capacity of Mine
 - Assessment of mine water chemistry²
 - Determine elevation v. volume relationship
 - Evaluate mine hydraulics

1 Patrick Bryan & Graham Parkinson, 8:45 2 Kelly Sexsmith & Stephen Day, 9:15

3D Cutaway of Britannia Mine

Mining and Hydrogeology Study - SRK

Metres Water Above 4100 Plug

- 4100 Level Plug test completed
- Mine reservoir simulation model developed
- Jane Basin diversion study in progress
- Jane Basin stability assessment nearing completion
- Structural geology study completed

Flood Risk Assessment - WMC

Flood risk study required:

- Long history of flood and debris torrent events associated with Britannia Creek
- Dilapidated dams in watershed
- Some remedial works for Fan Area possibly located in flood plain

Funnel Dam

Flood Risk Assessment - WMC

Determine flood risk and mitigation:

- Site surveys
- Maximum probable flood
- Debris flow analysis
- Sedimentation analysis
- Dam breach analysis
- Flood flow routing
- Modelling

Contaminated Sites Investigation - URS

- Assessment of secondary contamination sources by:
- Site Investigations in Fan Area and Additional Areas, including:
 - historical information review
 - risk assessments*
 - boreholes, test pits, surficial sampling
 - groundwater pumping tests & modelling
 - storm water runoff sampling
 - sediment & biota sampling
- Development of remediation plans

*Cindy Ott & Steve Sibbick, 9:45

Contaminated Sites Investigation - URS

- Reports completed:
 - Fan Area PSI & DSI reports
 - Fan Area ecological risk assessment
 - Fan Area human health risk assessment
 - Fan Area remediation planning document
- Additional Areas PSI and DSI fieldwork complete, investigation, risk assessment and remedial planning reports in preparation

Water Treatment - AMEC

Determine Optimum Treatment Plant Design by:

- Pilot treatment program (CEMI):
 - High Density Sludge (HDS) program (lime addition)
 - Consider upstream metals removal (UMR)
- Plant feasibility study
 - Conceptual plant design
 - Plant siting and access
 - Sludge disposal study(s)
 - Outfall feasibility study

Water Treatment - AMEC

- Treatment plant pilot study report completed
- Plant location stakeholder workshop held
- Site selection report completed
- Preliminary sludge disposal option study/report completed. Second phase study in progress
- Geotechnical investigation completed
- Plant feasibility study issued (draft)*
- Outfall study in progress

*Doug Lee & Tom Higgs, 10:45

Water Treatment – Plant Sizing

Plant sizing considerations:

- Nominal 1050m3/hr plant selected for feasibility study
 - Desktop hydrological/hydrology studies
 - Previous mine flooding records
 - Results of phase 1 of the 4100 Level Plug test
- SRK daily reservoir simulation model developed from plug test data - basis of assessing ability of plant to accommodate range of flows for previous 25 years
- Extension of the SRK model allows effects of operator decision rules to be simulated
- Will be used as input into permitting process

input	N 2 2 2 2 2		on modoling	18 1 1 2 m
Design Capacity=	1050 m3/hr	292 L/s		N. S.
Hydraulic Capacity=	<mark>1400</mark> m3/hr	389 L/s		AF ALT
Plug Capacity=	4000 m3/hr	1111 L/s	and the state of the second	T BIER BORN
	1.11	and the second		3-2
Level I Criteria: Controlle	d discharge of untre	eated water	100 - 100 - 1000	San 2
Increase flow of untreated water by a further		50 L/s	 If the mine water level exceeds If the rate of increase of the mine water level exceeds 	<mark>150</mark> m 1 m/day
Decrease flow of untreated water by		25 L/s	1. If the rate of increase of the mine water level is less than	1 m/day
Level II Criteria: At high v	values of estimated s	Snowpack Water E	Equivalent (SWE)	
If SWE exceeds		0 mm	In April	
Increase the WTC flow by a	further	50 m3/hr	1. If the mine water level exceeds	21 m
		YT.	2. If the rate of increase of the mine water level exceeds	2 m/day
Decrease the WTC flow by	a further	<mark>50</mark> m3/hr	1. If the rate of increase of the mine water level is less than	<mark>-1</mark> m/day
				A WAR S

Output

Innut

Example: 1050m3/hr design capacity plant

Percentage of water treated = 97.38266

Estimated Total Inflows to Mine (including flows that reported to 2200 level)

 $\overline{\overline{}}$

 $\overline{\mathbf{r}}$

 $\overline{\overline{}}$

Other Activities

- Site-Wide Monitoring Program:
 - integrates with scopes of Mining & Hydrogeology and Contaminated Sites investigations:
- Project Scheduling and Cost Control
- Permitting
- Database construction and maintenance
- Websites:
 - britannia.golder.com
 - wlapwww.gov.bc.ca/sry/p2/britannia/index.htm
- Newsletters, Reporting & Public Meetings

Project Schedule: Implementation

Qtr. 4 03 Qtr. 1 04 Qtr. 4 02 Qtr. 2 03 WTP Feasibility Study Review **Design-Build Specifications** Tender & Award **Detailed Design** Procurement Construction **Sludge Disposal Preparation**

Contaminated Sites Remediation

