Biological Treatment of Acid Wastewater for Selective Metal Recovery and Site Remediation

Commercial Case Studies

David Kratochvil, Michael Bratty
BioteQ Environmental Technologies Inc, Canada

Johannes Boonstra
Paques BV, The Netherlands
BioteQ and Paques have commercialized a high-rate H$_2$S generation biotechnology using sulphate and elemental sulphur for treatment of acid drainage, treatment of smelter and metal industry effluents, and recovery of metals as saleable concentrates.

4 Case studies:
- S^0 reduction upstream of an existing lime plant
- S^0 reduction to replace an existing lime plant
- S^0 reduction for metal recovery at a dump leach operation
- SO_4 reduction for groundwater remediation
Metal Sulphide Precipitation

Metal-contaminated effluent + H₂S → Metal Sulphide

- Metals can be removed selectively
- High grade, saleable products
Biological Sulphate Reduction

\[
3\text{SO}_4^{2-} + 2\text{C}_2\text{H}_5\text{OH} \rightarrow 3\text{HS}^- + \text{CO}_2 + 3\text{H}_2\text{O} + 3\text{HCO}_3^- \\
\text{SO}_4^{2-} + 4\text{H}_2 + \text{H}^+ \rightarrow \text{HS}^- + 4\text{H}_2\text{O}
\]
Biological Sulphur Reduction

\[6S^\circ + C_2H_5OH + 3H_2O \rightarrow 6H_2S + 2CO_2 \]

- sulphur \(S^\circ \)
- anaerobic sulphur reducing bacteria
- sulphide \(H_2S \)
BioteQ and Paques have a Technology Cooperation Agreement and market the BioSulphide - Thiopaq technology for a number of industrial applications.

14 industrial plants for reduction of sulphur compounds marketed under trademark Thiopaq®.

BioteQ owns the patented BioSulphide Process™ concerned with the reduction of sulphur compounds and concurrent selective recovery of metals.

First industrial BioSulphide-Thiopaq plant built in Canada.
Why Sulphide for Water Treatment

- Better effluent water quality - metal sulphides have lower solubility than hydroxides - lower overall TDS
- Easier and less expensive solid-liquid separation - sulphide precipitates are crystalline and have higher density
- Metals not stored on site as hydroxide sludge
- Opportunities for revenue from recovered metals
- Stand-alone application or integrated with lime plant
- When integrated with lime plant:
 - Reduced chemical consumption
 - Reduced volumes and toxicity of sludge
 - Environmentally better solution - better quality water, metals recycled and sludge is more stable
Biogenic Sulphide Generation

- Sulphur reduction produces lowest cost sulphide
- Sulphide is produced on demand - more efficient dosing of reagent
- Increased safety - low inventory of sulphide
Case Study 1

S0 Reduction Upstream of Lime Plant

Caribou Mine, New Brunswick
Caribou Flowsheet

Bioreactor

Sulphur → Bioreactor → H₂S
Nutrients → Bioreactor

Mine Water → Contactor

Soda Ash → Clarifier

Lime (reduced consumption) → Lime Reactor

Sludge (reduced volume and toxicity) → Clarifier

Effluent (high quality)

Design
700 m³/day
450 mg/L Zn
30 mg/L Cu
pH 2.7

Bioteq
Benefits of BioteQ Plant at Caribou

Incorporating high-rate biotechnology at Caribou has resulted in the following benefits (Stage 1):

- ~100% removal of zinc, copper, cadmium and lead from the mine water
- Zinc product recovered for sale (est. 215 tonnes per year)
- Projected lime savings of 24%
- Volume of lime sludge production reduced by estimated 35%
- Estimated reduction of heavy metal content of sludge from 125 tonnes/year to less than 0.1 tonnes/year
Caribou Project Facts

- Started Engineering: June 1, 2001
- Start up / inoculation: November 23, 2001
- Commissioning complete: February 2002
- Budget CAPEX: $550,000
- Actual CAPEX: $523,000

- Metal concentrations in feed water exceeded design by 1.5 to 2 times
- Sulphide generation rate 0.26 to 0.43 kg/m³ mine water - exceeded design expectations
- Plant availability 98%
- Zn concentrate (+ Cd, Cu, Pb) sold to Noranda Brunswick
Caribou Expansion Under Review

- **Tailings**
- **Mine Water**
- **Bioreactor**
 - **H₂S**
 - **Sulphur**
 - **Reductant**
- **Lime**
- **Zinc Concentrate**
- **Copper Concentrate**
- **Lime Reactor**
- **Clarifier**
- **Wash**
- **To Tailings Pond**
- **Thickener**
- **Leach**

Flowchart:
- Tailings and Mine Water enter the system.
- Flow through **Leach**,
- then **Thickener**,
- then **Wash**,
- then **Bioreactor** with **H₂S**,
- then **Sulphur** and **Reductant**,
- then **Lime** to **Lime Reactor**,
- then **Clarifier**,
- then **Copper Concentrate** and **Zinc Concentrate**
- to **Sludge** and **Effluent**.
Case Study 2

S^o Reduction to Replace Lime Plant

Raglan Mine, Quebec
Raglan Flowsheet

Bioreactor

\[\text{Sulphur} \rightarrow \text{H}_2\text{S} \rightarrow \text{Soda Ash} \]

\[\text{Nutrients} \rightarrow \text{Sulphur} \rightarrow \text{H}_2\text{S} \rightarrow \text{Soda Ash} \]

Contaminated Water

\[\text{Contaminated Water} \rightarrow \text{Bioreactor} \rightarrow \text{Clarifier} \rightarrow \text{Contactor} \rightarrow \text{Nickel Sulphide Product} \rightarrow \text{Treated Water Discharge} \]

Design

5000 m³/day
30 mg/L Ni
pH 6.5

5000 m³/day
<0.5 mg/L Ni
pH 7.5

(NO SLUDGE)
Advantage to SMRQ-Falconbridge

- No sludge disposal and storage
- Better quality treated water (TDS)
- Nickel recovery from wastewater
- More reliable treatment process for cold weather operation
- Reduced water treatment costs
Raglan Facts

- Piloting on site complete
- Engineering in progress
- Mine life +30 years

- Projected capital cost: CDN $1.1 million
- Net operating cost: $0.05 per m³ (after nickel revenue)
- Current operating cost: $0.45 per m³
Case Study 3

S^0 reduction for Metal Recovery in Dump Leach Operation
Bisbee, Arizona
Bisbee Flowsheet

Design
- 10,300 m³/day
- 390 mg/L Cu
- 860 mg/L Fe (III)
- pH 2.4
Bisbee Facts

- Detailed engineering in progress
- Planned startup 3Q 2003
- 3.2 million lb Cu /year
- 3,500 tonnes Cu concentrate/year @>45% Cu
- Reduced environmental liability

Projected capital cost: CDN $2.56 million
Operating cost: $0.20 per lb Cu
Capital payback: < 2 years
Case Study 4

SO$_4^-$ Reduction for Groundwater Remediation

Budel Zink, Netherlands
Sulphate Reduction at Budelco

- 200,000 tonnes/y zinc refinery
- Original plant commissioned in 1992
- UASB bioreactor
- Metal sulphide and sulphur returned to smelter

Diagram:

- Groundwater
 - Flow 300 m³/h
 - Zn 100 mg/L
 - SO₄ 1000 mg/L

- HS⁻

- Anaerobic
 - Reductant

- Aerobic
 - Air

- Sulphur
 - Zn <0.3 mg/L
 - SO₄ <200 mg/L

- Effluent

Zinc product to smelter
Thiopaq® Bioreactor at Budelco

- Hydrogen-fed Thiopaq® bioreactor commissioned in 1999
- 2 streams are treated...
 - Wash tower acid (0.5 g/L Zn, 10 g/L H₂SO₄, 1 g/L HCl, 0.5 g/L HF)
 - Electrolyte bleed (15 g/L Mg, 300 g/L SO₄)
- Streams previously treated with lime

Diagram:
- Calcine, ZnO
- Wash Tower Acid
- Crystalactor
- Electrolyte bleed
- Bioreactor
- Hydrogen
- CaF₂ pellets
- Zinc product to smelter
- Effluent to groundwater plant
Budel Plant Data

<table>
<thead>
<tr>
<th>Design Capacity</th>
<th>H$_2$S Influent</th>
<th>Production</th>
<th>Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,200 kg/day</td>
<td>ZnS</td>
<td>In</td>
</tr>
<tr>
<td></td>
<td>40 m3/h</td>
<td>CaF$_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BiOTEQ
Conclusions

- High-rate, engineered bioreactor systems offer many possibilities for application in mining and related industries.

- Commercially proven, safe and robust biological processes remove sulphur compounds and recover metals for sale.

- Current and potential applications include:
 - Treatment of ARD
 - Low cost H_2S production
 - Selective metal removal from metallurgical and waste streams
 - Sulphate reduction for environmental compliance
 - Sulphate reduction for industrial water control
 - SO_2 removal