

Using Synchrotron Radiation to Characterize Arsenical Smelting Products

Trevor M. Bergfeldt Research Chemist, Chemistry & Environment Teck Cominco Research, Teck Cominco Metals Ltd. Trail, BC

© Teck Cominco Metals Ltd.

Outline

- Overview of Teck Cominco & Trail Ops
- Teck Cominco and synchrotron radiation
- Results of an As characterization study
 - #2 Baghouse Dust

teck cominco

- Fe-As-Sb autoclave residue
- Potential applications
- Summary & Conclusions

- Canadian-based natural resource group
- Principal activities: mining, smelting, refining
- 2 Refineries

teck cominco

- Trail, BC
- Cajamarquilla, Peru
- Mines in Canada, USA and Peru (Zn, Pb, Cu, Mo, Au, coal)

teckcominco

Trail Operations

Largest integrated Zn-Pb smelting & refining complex of its type in the world Capacities: 290,000 t/y Zn, 120,000 t/y Pb Ag, In, GeO₂, Bi, Cd, Au, Iow alpha Pb supplific acid, ammonium sulphate, SO₂, elemental S, copper arsenate, copper sulphate, sodium antimonate High level of environmental awareness

Teck Cominco & SR

- Teck Cominco & CLS members of CAMIRO
 - organization that promotes and manages collaborative research within mining industry
- CLS sponsored a demo project at APS for CAMIRO members (March 2002)
 - demonstrate the use of SR-based techniques to mining/metallurgical industry (As and Se)
 - option to attend demo and bring samples

XANES & XAFS

- X-ray absorption near edge structure
 - measures characteristic absorption of an X-ray with an electron in a particular core energy level
 - very sensitive to oxidation state

teck cominco

- main absorption band for As: $4p \leftarrow 1s$
- X-ray absorption fine structure
 - interaction with neighbouring atoms
 - can "sit" on absorption band of an element and "look out" at local environment

teckcominco

Demonstration at APS

- Advanced Photon Source
 - Chicago, IL
 - PNC-CAT beamline
- Sent arsenic samples for analysis
- Samples compared to arsenic standards
 - AsFeS
 - As_2O_3
 - FeAsO₄·2H₂O

#2 Baghouse Dust

- Product from lead refining
- Very fine dust 60% Sb & 15% As
- Feed to produce copper arsenate and sodium antimonate
- Historically assumed to be mixture of Sb₂O₃ and As₂O₃
- Actual speciation important for present and future processing options

SEM & XRD

SEM

teckcominco

• very fine As & Sb oxides (< $1\mu m$)

XRD

- predominantly senarmontite (Sb₂O₃)
- essentially "amorphous"
- likely As₂O₃ (virtually identical to Sb₂O₃)
- possibly As-O-Sb, but lines also identical

SR Results for #2BHD

- XANES (in a matter of seconds)
 - quantitatively As(III)
- XAFS
 - high degree of fine structure ("very crystalline")
 - 1st NN is O (i.e. As-O)
 - 2nd NN is NOT As (i.e. not As-O-As)
 - due to high [Sb], As-O-Sb most likely
 - mostly Sb₂O₃ with some SbAsO₃

Fe-As-Sb Residue

- Research project to investigate options to stabilize arsenic and antimony for storage
- #2BHD autoclaved with Fe₂(SO₄)₃ to precipitate Fe_x(AsO₄)_y
- Residue: 55% Sb, 14% As, 17% Fe
 - SEM: identified Sb-Fe-As-O & Sb-As-Fe-O
 - XRD: possible As₂O₃
 - "unidentified phase with 3 broad peaks, poor crystallinity and possible hydroscopic nature"

SR Results for Residue

- XANES: 30% As³⁺, 70% As⁵⁺
- XAFS: does not match any standards
 - 1st NN is O (i.e. As-O)
 - As(V) as AsO₄³⁻ As (III) as unreacted #2BHD
 - 2nd peak is split, so 2nd NN is ...
 - Fe(?) but not scorodite or amorphous FeAsO₄
 - possibly AsO₄³⁻ adsorbed on ferrihydrite
 - Sb(?) matches 2nd peak of #2BHD
 - 30% unreacted starting material (#2BHD)

Fourier Transform of XAFS

teckcominco

Teck Cominco Research - Shaping Tomorrow Through Technical Innovation

© Teck Cominco Metals Ltd.

Summary

#2BHD

- As present is quantitatively trivalent
- As³⁺- O in #2BDH is NOT As₂O₃
- Sb₂O₃ with AsSbO₃ (As-O-Sb)
- Fe-As-Sb Residue
 - ~ 30% As not completely oxidized
 - As⁵⁺ is AsO₄³⁻, possibly adsorbed on ferrihydrite
 - also As-O-Sb, from unreacted starting material

teckcominco

Other applications ...

- Speciation & association of metals in ...
 - ores & concentrates (PGMs, Ag, Au, In, Ge)
 - mill tailings, effluents & other in-process materials
 - ARD
 - soils & sediments
- Speciation of surface coatings on minerals from various portions of flotation circuits
- Map slices of rock/ore/agglomerate
- Surface analysis to look for corrosion, cracks, layered coatings with high resolution

Conclusions

- SR-based techniques <u>valuable tools</u> for mining & metallurgical applications:
 - determine oxidation states
 - determine nearest neighbour associations
- Allows for characterization of material not possible by traditional methods
 - high resolution
- 2 additional projects ongoing with CLS

Acknowledgements

- Teck Cominco Research
 - GGRichards, KMPenney, RWGreen, SJWalden
- Canadian Light Source
 - JNCutler & NChen
- BC Synchrotron Institute
 - CJones

Questions ?

Teck Cominco Research - Shaping Tomorrow Through Technical Innovation

© Teck Cominco Metals Ltd.