Samatosum’s Mine Drainage

Matthew Bliss, Brent Hamblin, Craig Ford
Inmet Mining Corporation

10th Annual British Columbia ML ARD Workshop
December 2003, Vancouver, BC
- about Inmet and opening comments
- about Samatosum and history
- closure plan
- rehabilitation activities
- water quality
- managing waste rock drainage
- summary and conclusions
- the neighbours
- closing comments
Inmet Mining Corporation is a Canadian based international mining company.

Its mining operations produce copper, zinc and gold, and Inmet’s growth strategy is focused on finding quality base metal reserves.

Inmet’s operating base consists of four competitive mining operations: Çayeli, Pyhäsalmi, Troilus and Ok Tedi.
Samatosum’s mine and waste rock drainage has evolved since the closure plan was developed.

Operational challenges and capital project assessment, associated with variable flow and water quality, are managed with the help of monitoring programs.

The current relative stability of the site’s drainage chemistry is being managed with the help of a regularly reviewed management system.
Closed open pit and underground base metal mine

– 75 kilometres north of Kamloops, 15 kilometres east of Barriere
– 289 hectare lease at 1000 to 1500m elevation AMSL

Operated from 1989 to 1992 at 500 tonnes per day

– 566,000 tonnes mined to produce silver, lead and zinc concentrate
– 3,014,000 m³, or 8.14 million tonnes of waste rock (layered)
– 422,462 m³, or 542,000 tonnes of sub-aqueous tailings
Samatosum is part of the Adams Lake watershed
- twelve kilometres upstream of Sinmax Creek
- two kilometres downstream of the Johnson Lake Resort
- receives 50-60% runoff, 850 mm annual precipitation

Currently, the site consists of
- a reclaimed tailings pond,
- a flooded open pit and re-vegetated waste rock,
- collection and diversion ditches, sumps, and pipelines
- an HDS plant, sedimentation pond, and sludge storage ponds
1983 – gold discovered at Rea Gold
1986 – silver and zinc discovered at Samatosum
1989 – production began
1992 – production ceased
1995 – tailings water cover installed
1996 – low density lime treatment of mine drainage
1998 – HDS plant commissioned to treat mine drainage
2001 – surge pond capacity increased
2003 – automation improvements
plan map of Samatosum
The closure plan was an integral part of the operating plan.

Samatosum’s reclamation permit was issued in 1989.

The closure plan, negotiated with the Province, adopts a standard approach to rehabilitation
 – waste rock was segregated and deposited as planned
 – infrastructure was removed to ensure public safety
 – slopes were stabilized
 – disturbed areas were re-vegetated
 – water quality monitoring continued to track performance

The objective was to return the property to the Crown within three to five years after mine closure.
Between 1992 and 1995 Inmet performed:
- dismantling, slope stabilization, re-vegetation
- tailings re-grading and water cover installation
- water quality monitoring
- environmental and geotechnical surveys and investigations

From 1993 to 1996 the layered waste rock system was reassessed
- sporadic acid drainage was observed at the pit
- increasing metal concentration in pit and waste rock drainage
- lime addition required for mine and waste rock drainage
Within a few years of closure it was clear that the layered waste rock system would not adequately protect Johnson Creek, therefore Samatosum

- established infrastructure the required for water treatment
- initiated lime treatment from simple to more efficient systems; manual → low density system → HDS plant
- continued and at times, expanded monitoring programs
- developed and implemented a management system
- worked with Inmet to develop and implement risk assessment and audit tools to supplement the management system
- increased capacity for mine and waste rock drainage
- improved plant automation to reduce risk and response time
rehabilitation activities
rehabilitation activities
Flooded open pit drainage
 - is connected to underground workings
 - has low pH and high metals

Waste rock drainage discharges at two sumps
 - western area (sump 6A) has elevated metals
 - eastern area (sump 6B) has elevated metals and sulphate

Tailings water cover
 - operates as designed and does not require treatment
pit and waste rock

creek
sed pond
plant
surge pond
6B
open pit
6A
waste rock
flooded open pit water quality

Flooded Open Pit Water Quality - pH

Flooded Open Pit Water Quality - Sulphate

Flooded Open Pit Water Quality - Acidity

Flooded Open Pit Water Quality - Alkalinity
flooded open pit water quality

Flooded Open Pit Water Quality - Zinc

Flooded Open Pit Water Quality - Iron

Flooded Open Pit Water Quality - Copper
pit and waste rock

- creek
- sed pond
- plant
- surge pond
- 6A
- 6B
- open pit
- waste rock

INMET MINING
waste rock water quality - west

Rock Dump Seepage Water Quality - 6A pH

Rock Dump Seepage Water Quality - 6A Sulphate

Rock Dump Seepage Water Quality - 6A Acidity

Rock Dump Seepage Water Quality - 6A Alkalinity
waste rock water quality - west

Rock Dump Seepage Water Quality - 6A Iron

Iron mg/L

Jan-90 Jan-91 Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03

Fe

Rock Dump Seepage Water Quality - 6A Zinc

Zinc mg/L

Jan-90 Jan-91 Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03

Zn Linear (Zn)

Rock Dump Seepage Water Quality - 6A Copper

Zinc mg/L

Jan-90 Jan-91 Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03

Cu
waste rock water quality - east
Rock Dump Seepage Water Quality - 6B Iron

Rock Dump Seepage Water Quality - 6B Zinc

Rock Dump Seepage Water Quality - 6B Copper
Waste rock flows vary throughout the year, and as much as 70 percent of the annual flow is treated during the spring.

Waste rock flows range from 37 to 2,000 cubic meters per day.

Waste rock drainage pH ranges from 3 to 8.

Metal concentrations vary by up to three orders of magnitude.

<table>
<thead>
<tr>
<th>metal</th>
<th>high (mg/L)</th>
<th>low (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>copper</td>
<td>28</td>
<td>0.028</td>
</tr>
<tr>
<td>iron</td>
<td>1080</td>
<td>0.97</td>
</tr>
<tr>
<td>manganese</td>
<td>120</td>
<td>0.45</td>
</tr>
<tr>
<td>zinc</td>
<td>239</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Waste Dump discharge

- 2002
- 2003

m³/day

J F M A M J J A S O N D
Managing waste rock drainage

Waste Rock Drainage Water Quality and Flow - 6A Zinc

Mg/L Zn and m3/day

Jan-02 Apr-02 Jun-02 Sep-02 Dec-02 Mar-03 Jun-03 Sep-03 Dec-03

zinc
flow
managing waste rock drainage - aeration controls Mn
Plant performance depends on balancing the open pit and waste rock drainage; when treating waste rock drainage, plant performance:
- improves with the use of water from the open pit, and
- is dependent on dissolved solids concentration

Sludge recycle ratios are higher than design
- likely due to relatively low iron, and
- are further increased to improve plant performance during winter

Sludge production has decreased over the past three years due to:
- improved sludge management
- stable water quality from open pit and waste rock
Rock Dump Seepage Water Quality
6B Magnesium vs. Sulphate

![Graph showing the relationship between magnesium and sulphate concentrations in water samples.](image)
treatment sludge
- Sludge is comprised of gypsum, epsomite, and dolomite
- The sludge contains the following elements:

 - magnesium 12.5 percent
 - iron 10.0 percent
 - calcium 10.0 percent
 - sulphur 7.0 percent
 - zinc 3.5 percent
 - manganese 1.5 percent
 - carbon 1.0 percent
 - aluminum 0.8 percent
 - copper 0.3 percent
Inmet places high priority on compliance with all applicable legislation at all of its sites.

Samatosum has made considerable progress rehabilitating the site, with dramatic improvements in water quality.

Water quality impacts have been minimized by monitoring the performance of rehabilitation systems and mitigating problems as they arise.
summary and conclusions

Water quality at Sam will continue to change slowly over time.

Open pit water quality is likely stable
 - pH, sulphate and acidity have stabilized, and
 - alkalinity appears to have been consumed
 - open pit metals also appear to have stabilized

Waste rock water quality appears stable at this time
 - pH sulphate acidity appear stable, however
 - alkalinity is still available to neutralize acid
 - metals appear stable at this time, however alkalinity consumption will likely be associated with lower pH and may increase copper concentration
summary and conclusions

Water quality monitoring at the pit and waste rock locations will continue in order to ensure that evolving acidic and metal-bearing drainage can be managed effectively.
the neighbours
-anglers and Rainbow trout
the neighbours
ranchers, loggers, residents, salmon
Samatosum’s mine and waste rock drainage has evolved since the closure plan was developed.

Operational challenges and capital project assessment, associated with variable flow and water quality, are managed with the help of monitoring programs.

The current relative stability of the site’s drainage chemistry is being managed with the help of a regularly reviewed management system.