HARDY AND KIDD ACID DRAINAGE AND METAL LEACHING HISTORIES: CONTRASTS AND COMPARISONS

Ronald V. Nicholson, Ph.D.
Stantec Consulting Ltd.
10th Annual BC ML/ARD Workshop
Vancouver, December 2-3, 2003
“THE” ARD / Metal Leaching MODEL

Acid + Metals

Time
“THE” ARD / Metal Leaching MODEL

Ronald V. Nicholson, Ph.D.
Vancouver, Dec 2003
Kidd Tailings and the Hardy Mine Site

• Kidd Tailings
 – Active
 – Zinc, Copper
 – High Sulphide
 – Treatment ongoing

• Hardy Mine Site
 – Inactive Since 1972
 – Nickel, copper
 – High Sulphide
 – No Treatment
Kidd Tailings (South Section)

1,200 hectares

Thickened Tailings Discharge

#1 Lime Station
#2 Lime Station

Pond D
North Cell

Pond D
South Cell

Pond A

Water Treatment

Drainage
Older Oxidized Tailings in Foreground – Freshly Deposited Tailings in Background
Spatial Trends of Dissolved Sulphate, Iron and Zinc in Pore Water (top 50 cm)
Tailings Deposition

#1 Lime Station
Pond D
South Cell

#2 Lime Station
Pond D
North Cell

Pond A
Tailings Deposition
Tailings Deposition

Ronald V. Nicholson, Ph.D.
Vancouver, Dec 2003
Tailings Deposition
Tailings Deposition
Lime Usage

<table>
<thead>
<tr>
<th>Date</th>
<th>Monthly Requirement</th>
<th>Cumulative Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculated Lime Demand at Treatment Plant
(Assuming No Mitigative Action on Tailings)
Groudwater Below the Large Pyrrhotite Stockpile

Ronald V. Nicholson, Ph.D.
Vancouver, Dec 2003
Groudwater Below the Small Pyrrhotite Stockpile

Ronald V. Nicholson, Ph.D.
Vancouver, Dec 2003
Groundwater below the Former Waste Rock Stockpile Down Gradient of the Open Pit

Ronald V. Nicholson, Ph.D.
Vancouver, Dec 2003
Groundwater below the Former Waste Rock Stockpile Down Gradient of the Tailings Beach

Ronald V. Nicholson, Ph.D.
Vancouver, Dec 2003
Estimated Loadings from ALL Sources

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Maximum Estimated Load From Hardy (kg/day)</th>
<th>Measured Load in Onaping River (kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate</td>
<td>1,100</td>
<td>26,000</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.4</td>
<td>22</td>
</tr>
</tbody>
</table>
Concluding Remarks

- **Kidd**
 - Increased loadings during operation unexpected
 - Unique challenges being managed by selective tailings placement and progressive reclamation
 - Closure plan includes cover to reduce exposure and loadings
 - Conditions expected to alter dramatically after closure – but mat require indefinite treatment

- **Hardy**
 - Loadings generally diminishing after 30 years
 - Limited reclamation required
 - Groundwater pathways have provided natural mitigation
 - Complex mine site with surprisingly small impacts