BC Metal Leaching/ARD Workshop

Vancouver, British Columbia

Lime Sludge Management – An Update on Technologies

Janice Zinck

December 2, 2003

Canada

Natural Resources **Ressources naturelles** Canada

Overview

Introduction

- Sludge characteristics
- Issues

Sludge Disposal Options

- Pond disposal
- Co-disposal
 - Disposal in Mine Workings
- Sludge in Backfill
- Reprocessing of Mine Sludge
- Stabilization with Additives
- Landfill
- Sludge re-use options
- Sludge management in the North
- Reclamation
- Information gaps
- Conclusions

Acid rock drainage: dissolved M + H₂SO₄

Lime treatment:

 $Ca(OH)_2$

CaSO₄.2H₂O

Metal precipitation:

 $\Rightarrow \frac{\text{Fe(OH)}_3}{\text{Zn(OH)}_2}$

Natural Resources Canada Ressources naturelles Canada

Volume

- ~6.7 million m³ sludge/yr
- Low percent solids
- Long-term stability?
 - amorphous
 - metal speciation
 - gypsum/calcite
- Physical stability

Sludge Properties

- 2-40% solids
- amorphous mass containing most metals (Fe, Zn, Cu, Cd...)
- calcite, gypsum
- 2-30 microns
- pH 8.5 to 11

Ressources naturelles Canada

Sludge disposal considerations

- Dewatering ability
- Slurry density moisture content
- Volume rate of production
- Metal stability available alkalinity
- Sludge composition
- Economics

Natural Resources Canada Ressources naturelles Canada

Pond Disposal

- Dewatering and storage areas
- Issues
 - Wind resuspension, dusting
 - Land costs
 - Pond failure thixotropic sludge properties
- Types
 - Excavation, earthen dam, concrete, lined, beached
 - Polishing a/o long term storage
- Costs
 - Depend on sludge production rate, stability
 - Mechanical sludge removal may be required (\$10-20/m³)

Pond Disposal

• Disposal above water table

Erosion (wind, water) and surface infiltration increase

• Disposal below water table

- Sludge remains wet, cracking limited
- Isolate sludge from surface erosion and hydraulic gradients

Pond Disposal Study

- Metal mobility was not a concern for the given leaching period (>3 years)
- Addition of a water cover over sludge significantly decreased metal mobility
 - sludge cracking avoided
 - better distribution of buffering capacity to the system

Stability of sludge under reducing **conditions – Laboratory Study**

- Monitoring of pore water chemistry at • intervals
- Automated, continuous in situ • monitoring of multiple redox measurements in the sludge columns
- XAS As characterization in the sludge • at the end of reduction and reoxidation.
- For the studied sludge, 9 mo of ٠ imposed reducing treatments did not reduce As(V) to As(III) nor mobilize As

Co-disposal with other wastes

Eliminates additional waste management facility

• Sludge-tailings co-disposal environment

- Beneficial both in terms of sludge stability and the abatement of acid generation at least in the short term.
 - source of excess alkalinity
 - fill interparticular voids and reducing oxygen and water penetration
- Sludge could become unstable if in contact with higher levels of acidity
 - tailings oxidation
- Lime sludge should never be deposited with partially oxidized tailings as metal leaching is inevitable

Sludge-Tailings Co-Disposal

Sludge as cover over Tailings

- Sludge permeability
 - low permeability maybe an effective barrier to water
 - wet/dry cycles cause cracking allowing water and oxygen to reach the tailings
- Sludge layer disposal not effective to stop or to significantly slow down oxidation
 - short term solution only

Sludge-Tailings Co-Disposal

• Sludge mixed with tailings prior to disposal

- ~<5% sludge in tailings</p>
- Fill void spaces in tailings
- Only reduce the metal mobility in the short term
- Longer term
 - higher degree of oxidation
 - dissolution/depletion of sludge will occur

• Sludge disposed with waste rock

- Fill void spaces in waste rock, not effective as a seal or cap
- Short term amendment
- Low cost, no adverse environmental issues
- Does not prevent acid generation
- Potential for sludge dissolution

Disposal in Mine Workings

- Sludge pumped/trucked to boreholes drilled into u/g inactive deep mines
- Sludge alkalinity provides some neutralization of acidic mine water
- Ferric hydroxide does not dissolve rather accumulates in workings
- Surface reclamation not required
- Considerations
 - Site availability and access
 - Mine capacity, void space, configuration
 - Sludge properties viscosity
- Advantages
 - Filling of mine voids may reduce subsidence
 - Sludge may assist neutralization of mine water
 - Low surface land consumption/reclamation

Sludge in Backfill

- Paste backfill is a common practice in the mining industry integration of sludges and slag as a backfill material to reduce the amount of waste to dispose at the mine surface
- Cementitious stabilization of slag, tailings and sludge
- Chemical and physical stability
- Pogo mine (Alaska) proposed disposal (2003)
 - Sludge from water treatment facilities backfilled underground during operation.

Ressources naturelles Canada

Reprocessing of Sludges

- **Sludges can contain significant concentrations of metals**
 - Zn, Cu, Ni
 - Metal recovery to offset costs
- Hydrometallurgical approaches
 - Solvent extraction
 - Fluidized Bed Ion Exchange
 - Acid Leaching
- Smelting •
 - Requires sludge drying (rotary dryer less than 20% moisture)
 - Impurities impacts
 - No additional disposal costs, recycling, no additional liabilities

Smelting Sludges - Examples

Asarco's California Gulch

- Pb reports to the bullion, Cu to the matte, Cd to the bag-house dust, and Zn, Fe, Al, and other trace metals to the slag.
- Primary benefit of sludge addition is the lime content and incidental Pb and Cu units recovered well.
- Pasminco Port Pirie Smelter (PPPS) South Australia
 - Lime neutralization, sodium sulphide and ferric chloride
 - Slurry is thickened and filtered with the solids being returned to the smelter for re-processing.

Stabilization with Additives

- Chemical and/or Physical Stabilization
- Physical entrapment, chemical fixation, binding
- Compatibility of binder with sludge is crucial
- Six major stabilization methods
 - Sorption, lime-based, cement-based, thermoplastic techniques, polymeric and encapsulation
- Typically cost prohibitive but may be applicable to certain high risk sludges
 - \$50 to \$300 per tonne

Natural Resources Ressources naturelles Canada Canada

Sludge Stabilization

- Objectives
 - Stabilize leachable metals
 - As, Ba, Zn, Cd, Cr, Cu, Ni, Pb, Zn and Se
 - Obtain an inert and insoluble material
 - Improve physical properties of the sludge
- Benefits
 - Use sludge as a dry barrier over tailings
 - Sludge stabilization (chemical and physical)
 - Use if other wastes to stabilize (red mud, fly ash, etc.)
 - Sludge as landfill/backfill material
 - ~\$5/tonne for PC and fly ash only

Stabilization

Vitrification

- Metals stabilized in solid inert glass
- Material very durable and stable over long term
- Volume reduction up to 97%
- For extremely hazardous sludges
- Cost very high

Natural Resources Canada Ressources naturelles Canada

Landfill

- Solid or hazardous waste
- Solid-liquid separation issues
- Requires dewatering and drying before transport
- Stabilization may be required
- Public concern over sludge transport to off site landfill
- Costs

Sludge Reuse Options

- Sludge as brick material
 - Sludge proportion and firing temperature key to compressive strength
 - Metal leaching low

• Agricultural land applications

- To raise soil pH
- Limited

Metal adsorbent in industrial wastewater treatment

- Able to remove a wide variety of contaminants, including Cu, Zn, Ni, Cr, Pb, As, and natural organic matter (NOM).
- Surface charge easily altered by adjusting the solution pH.
- Can be regenerated in-*situ* by reversing the solution of pH
- Replacement in cement manufacturing
 - Calcite/gypsum/free lime content
 - Drying required (<2% moisture)

Sludge disposal in the North

Field freeze-thaw ullet

- Percent solids in dewatered sludge after one winter

	UKH	Faro
Initial	23 %	28 %
Final	60 %	58 %

No metal mobility differences observed •

Canada

Canada

Ressources naturelles Natural Resources Canada

Reclamation

- Revegetation of mine sludge
- Provide ground cover to limit wind and water erosion
- Overcome nutrient deficiencies
- Degree and impact of metal uptake
- Alkaline tolerate plant species

Natural Resources Ressources naturelles Canada Canada

Information Gaps

- Better understanding of metal speciation in amorphous phase
- Cost effective metal recovery technologies
- Improved treatment methods to eliminate or reduce sludge production
- In-situ densification technologies
- **Required studies**
 - smelting of hydroxide sludge
 - disposal of sludges in mine workings
 - sludge in paste backfill
- **Policy to make sludge reuse feasible**
 - further studies to support

Conclusions

- Sludge disposal is an ever increasing issue
- Current practices do not address long term storage, and in some cases, long term stability issues
- Appropriate sludge disposal options are site specific
- Further research is required into disposal options that can either recover metal, densify existing sludge or safely dispose of the material in a way that it can either be easily reclaimed or disposed in mine workings
- Promising options must be both technologically feasible and also cost effective
 - Short and long term
 - Meet increasing environmental standards and pressures

Acknowledgments

- This study was supported by contributions from:
 - MEND, MAC and CANMET-MMSL

Mining Association of Canada L'Association minière du Canada

CANMET MINING AND MINERAL SCIENCES LABORATORIES

LABORATOIRES DES MINES ET DES SCIENCES MINÉRALES DE CANMET

Natural Resources Ressources naturelles Canada Canada

Thank You

Questions?

Canada

Natural Resources **Ressources naturelles** Canada

