

Golden Sunlight Soil Covers on Waste Rock and Tailings

By
Fernando F. Junqueira
Shannon Dunlap
G. Ward Wilson

Objective

 Use of numerical modelling to evaluate the performance of cover systems installed on the waste rock dump and tailings area under different weather and vegetation conditions.

Modeling input data

- Laboratory testing program
 - Grain size distribution
 - Saturated hydraulic conductivity
 - Estimated SWCC
- Weather data from local weather station
- Suction and temperatures profile from TC sensors.

Laboratory testing program

Grain size - Waste rock - Main Station

NEERING

Grain size – waste rock – Satellite st.

Grain size – Tailings area

K Sat. – Waste rock

K sat - Tailings

Estimated SWCC – Waste Rock Main station

Estimated SWCC – Waste Rock Satellite station

SWCC – Tailings area

Numerical Modeling

Numerical Modeling

- One-dimensional Model Soil Cover
- Influence of rain
 - Typical year case 348 mm of rain / snow
 - Wet year case 425 mm of rain / snow
 - Very wet year case 539 mm of rain / snow
- Influence of vegetation
 - No vegetation, poor, good and excellent condition
- Initial suction profile

Precipitation history

Simulated profiles

- Results - Initial suction profiles calculated by the model

Waste rock cover

Waste rock – Infiltration in typical year

Waste rock infiltration in wet year

Waste rock

Waste rock infiltration in very wet year

Summary

Tailings cover

Tailings – Infiltration in typical year

Tailings – Infiltration in wet year

LEERING

Tailings – Infiltration in very wet year

NEERING

Tailings infiltration summary

- Results - Suction profiles from TC sensors - Waste rock

Main Waste Rock Station 160 140 120 Matric Suction (kPa) 75 cm 100 80 60 20 cm 40 106 cm 42 cm 20 129 cm 75 cm 0 Apr 04 2002 May 24 2002 Jul 13 2002 Oct 21 2002 Sep 01 2002 Date

Infiltration summary

Infiltration evolution in typical year

Infiltration evolution in very wet year

Hydraulic Head

Conclusions

- On the waste rock dump, the performance of the cover system is strongly influenced by the vegetation condition.
- If the vegetation is preserved in good conditions, low infiltration is expected.
- On the tailings area, the finer material and the higher thickness cause the cover to be less dependant on the vegetation condition.
- Low infiltration expected

Conclusions

- The simulation showed the existence of different patterns of infiltration with upward flux from the waste rock dump in spite of infiltration through the bottom of the cover system.
- TC sensors suction profile supports the modeling results.
 - Despite the modeling results, field monitoring of the infiltrations is recommended.

