The Influence of Spatial Energy Distribution on Cover Performance

> Björn Weeks G. Ward Wilson

Mining Engineering

Dry Cover Design Tools

- Models to predict the water balance considering the impact of climate and soil type
 - Some common models:
 - HELP
 - SWIMM
 - Hydrus, Hydrus-2D
 - SoilCover, Vadose/W

Mining Engineering

Model limitations

- All models simplify real-world conditions
- Main difference in models lies in what assumptions are made
- Evolution of modeling has lead to more sophisticated calculations.
- Example: SoilCover
 - Introduced calculation of actual evaporation
 - solution of heat and mass flow equations
 - coupled with climate and soil data

Mining Engineering

Moving Beyond 1D

- 1 D is the most basic case to model, and provides great deal of design information
- Real world processes vary in 3D, and cover design research is progressing in this direction
 - Aubertin, Brussiere et al. (Sloped Capillary Barriers)
 - Vadose/W (2D formulation of SoilCover)
 - O'Kane et al.

The need for a 3D approach

- Waste dumps frequently have large abovegrade portions, with sloped surfaces.
- Depending on the site configuration, sloped surfaces can make up the majority of the dump.
 - Slopes on waste rock dumps are typically steep, 2.5H:1V

Some Factors that may vary with slope:

- Net Radiation (especially solar) affects evaporation
- Moisture Distribution higher near toe

Moisture at toe of slope

Some Factors that may vary with slope:

- Net Radiation (especially solar) affects evaporation
- Moisture Distribution higher near toe
- Runoff Rates may vary with slope
- Wind local variations can affect evaporation and snowpack
 - Vegetation differences induced by these other factors

Mining Engineering

Importance of Net Radiation

- Evaporation is a major water sink at many sites
- Evaporation is driven by net radiation (Q_{net})
 - Q_{net} is strongly influenced by the slope and aspect of a soil cover

...variability in elevation, slope angle and and orientation . . . can create strong local gradients in solar radiation" – O. Antonic, 1998, Ecological Modelling

"The radiation received by a surface is usually the major determinant of its climate"

– T.R. Oke, 1987, Boundary Layer Climates

Net Radiation (Q_{net}) and Actual Evaporation

• Both AE and PE are partly functions of net solar radiation

$$AE = \frac{\Gamma Q_{net} + \nu E_a}{\Gamma + A \nu}$$

Q_{net} is often measured as part of the climate monitoring at weather stations

Mining Engineering

The measurement of Q_{net} at a weather station

Net Radiometers

Evaporation in 3D

- The impact of 3D variations in net radiation have not been addressed in the context of cover design
- Previous attempts to look at this in a geotech context have not included actual evaporation calculations, or evaluated all aspects of radiation
- A model for the prediction of Q_{net} on slopes was required for use with existing flux boundary models.

The Components of Q_{net}

- Q_{net} is a composite measurement that includes several different types of radiation
- $Q_{net} = (S_b + S_d)_{down} + L_{up} L_{down} (S_b + S_d)_{up}$
 - $-S_b =$ beam component of shortwave
 - $-S_d = diffuse component of shortwave$
 - $-L_{down}, L_{up}$ = the downwards and upwards components of longwave radiation

Mining Engineering

Radiation on a Slope

- Different components of Q_{net} are affected by slope/aspect to different degrees
 - $-S_b$ is most sensitive
 - S_d and longwave components are also sensitive but to a much lesser degree
 - This complicates prediction

Mining Engineering

Predicting Q_{net} on a Slope

- Developed a model to predict Q_{net} on the slopes of a given site, based on the Q_{net} measured over the horizontal area
 - Estimate each component of Q_{net} based on sitespecific data.
 - Calculate effect of slope on each components
 - Sum the modified components to obtain Q_{net} on the slope

Model Requirements

- Inputs:
 - Q_{net}, Temp, humidity, site geometry, altitude, latitude, vegetation (albedo)
 - Output
 - $-Q_{net slope}$ for any given slope at the site

Mining Engineering

Model Verification – Using Field Data

- 90 days of field data collected on sloped soil cover (Equity Mine Site – North Central BC)
- Data collected on slopes facing all cardinal compass directions
- Slopes varied from 11 to 25 degrees.
- All slopes had similar vegetation, for similar albedo and emissivity.

Q_{net} measurement on slopes

Measured-Predicted Q_{net} (R²=0.95)

Verification

- Verification showed satisfactory performance of model
- Statistical analysis showed that model performed well on a variety of slopes.
 - Now have confidence to apply model to site

Model Application

- With predictive model for net radiation we can:
 - Predict how Q_{net} varies as a function of slope
 - Map the variations in Q_{net}
 - Couple these predictions with climate data to predict variations in PE
 - Couple with soils data to predict variations in AE (using existing models)

Mining Engineering

Impact of Slope on Annual Net Radiation

Application In 3D – Site Mesh

UB

Variation of Q_{net} over Time

Slope effect on radiation compared to...

Impact of Slope on Evaporation

Application with 2D analysis

-Non -compacted Till (0.3 m thick)

Compacted Till (0.6 m thick)

Waste Rock (2.5m-3.5 m thick)

Impact of moisture distribution

Conclusions

- Slope angle and orientation can significantly affect evaporation
- Variations in net radiation with slope drive variations in the evaporation rate
 - These variations in net radiation are predictable, and a model has been developed to make this predictions

More Conclusions

- The radiation model can be incorporated with existing models for flux boundaries, to improve evaporation estimates.
- Some potential design applications:
 - Optimizing material placement (variable thickness on cover layers)
 - Locating dump sites to maximize evaporation
 - Variable evaporation from tailings dams

Mining Engineering

End