KEMESS MINES METAL LEACHING AND ACID ROCK DRAINAGE PREDICTION PROGRAM

Presented by
Wade Stogran, Environmental Coordinator

12TH ANNUAL BRITISH COLUMBIA MEND ML/ARD WORKSHOP
PRESENTATION GOALS

- To show the development of the Kemess South ML/ARD program and associated permitting from start-up to its current format.
- To show the evolution of the permit requirements resulting from close cooperation with regulatory agencies.
A BRIEF HISTORY LESSON

- The mine was in part a trade-off for the development of the Tatshenshini Provincial Park which included the proposed Windy Craggy Project owned by Geddes Resources.
- Geddes Resources stake in the operation was purchased by Royal Oak Mines.
- Construction started in 1996.
- Production of concentrate started in Fall 1998.
- The mine entered receivership during 1999.
- The mine was purchased by Northgate in February 2000.
Kemess Mines Ltd.

Located in North-Central British Columbia

- **Mining rate**
 - 150,000 tonnes / day

- **Mill throughput**
 - 50,000 tonnes / day

- **Life of Mine (LoM) profile**
 - 275,000 oz/yr gold (in concentrate)
 - 74 million lbs/yr copper
 - Cash costs US$150/oz, net of credits

- **Reserves**
 - 91.7 million tonnes; >2 million oz of gold; 459 million lbs copper
The Site
Ore and Waste Rock Classifications

<table>
<thead>
<tr>
<th>Material</th>
<th>Nature</th>
<th>Concerns</th>
<th>Waste Testing Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overburden</td>
<td>Waste</td>
<td>None</td>
<td>ABA, ICP, XRD</td>
</tr>
<tr>
<td>Toodoggone Sediments</td>
<td>Waste</td>
<td>None</td>
<td>Shake Flask, Field Test</td>
</tr>
<tr>
<td>Asitka Group NAG and LAG</td>
<td>Waste</td>
<td>ML</td>
<td>ABA, ICP, Shake Flask, Field Test, Column Testing, XRD</td>
</tr>
<tr>
<td>Asitka Graphitics</td>
<td>Waste</td>
<td>ML/ARD</td>
<td>ABA, ICP, Shake Flask, Field Test, Column Testing, XRD</td>
</tr>
<tr>
<td>Asitka Group PAG</td>
<td>Waste</td>
<td>ML/ARD</td>
<td>ABA, ICP, Shake Flask, Field Test, Column Testing, XRD</td>
</tr>
<tr>
<td>Hypogene PAG</td>
<td>Ore, Waste, Sand</td>
<td>ARD</td>
<td>Humidity Cell, ABA, ICP, Shake Flask, Field Test, XRD</td>
</tr>
<tr>
<td>Leach Cap</td>
<td>Ore, Waste</td>
<td>ML</td>
<td>ABA, ICP, Shake Flask, Field Test, Column Testing, XRD</td>
</tr>
<tr>
<td>Supergene</td>
<td>Ore, Waste</td>
<td>Low PAG</td>
<td>Humidity Cell, ABA, ICP, XRD</td>
</tr>
<tr>
<td>Takla Volcanic Sediments</td>
<td>Ore, Waste</td>
<td>ML/ARD</td>
<td>ABA, ICP, Shake Flask, Field Test, Column Testing, XRD</td>
</tr>
</tbody>
</table>
Overburden and Non-lithified Sediments

- Consists of a wide variety of material types on the site but predominantly ablation and basal till in the area of the open pit,
- 8 samples analyzed during initial testwork indicated an absence of sulphides and all samples as slightly acid consuming,
- Initial permit sampling requirement of 1 pre-blast sample per 100,000 tonnes mined,
- Overburden stripping for the open pit was completed during 2003 with the exception of minor amounts excavated during work on the northwest corner of the open pit.
- Testwork shows these materials to be overall slightly acid neutralizing based on minor carbonate mineralization.
Toodoggone Sediments

- Toodoggone is a mixture of non-mineralized sedimentary and volcanic rocks with a calcite-bearing matrix,

- ABA testing conducted on 27 samples as part of initial static testing program with an additional 60 samples analyzed during the detailed static test program,

- Petrographic analysis conducted on 10 samples

- Results indicated low sulphur content, low acid generation potential and high acid consumption.

- Initial permit sampling requirement of 1 pre-blast sample per 100,000 tonnes mined,

- In November 2001 the requirement to sample the Toodoggone units was removed based on a review of ABA, ICP and petrographic results except where the Toodoggone cannot be segregated from the adjacent Asitka and Leach Cap units.
Asitka Sedimentary Group (NAG, PAG, and Graphitics)

- Sedimentary rocks interlayered with volcanic rocks. Sedimentary rocks found to have generally high carbonate content and be net acid consuming while volcanics found to host significant pyrite mineralization and tended to be net acid producing. LAG material is visibly similar to Leach Cap and handled in the same manner,

- Initial criteria of NPR<3 or sulphide-S > 0.8% used to delineate PAG,

- Little detailed information this waste rock existed from pre-development. Large testwork program initiated during 2000 and 2001 to further characterize this material,

- Graphitic sediments found to be potentially acid generating and metals leaching,

- Initial preblast and post blast sampling every 20,000 tonnes,

- During late 2001 temporary storage of Asitka Graphitics and Asitka PAG on an above ground stockpile was permitted,

- During 2002 the post blast frequency was increased to every 30,000 tonnes in area of PAG.
Mineralized quartz monzodiorite representing the bulk of the ore within the Kemess South deposit. Approximately 3 million tonnes moved as waste will be milled at end of mine life.

A total of 57 samples from 24 diamond drill holes showed material to be slightly acid generating. A further 175 ABA samples analyzed with only 60% of samples found to be potentially acid generating,

Initial pre and post blast sampling conducted every 20,000 tonnes,

During late 2001 temporary storage of Hypogene waste on an above ground stockpile was permitted,

During 2002 permit amendment reduced post blast sampling frequency to 1 sample every 100,000 tonnes.
Leach Cap

- Oxidized intrusive rock overlying the supergene ore. The copper originally within this unit has leached into the underlying supergene materials but there is gold within this unit.

- Originally classification identified both NAG (NPR>2) and PAG (NPR<2),

- Leach Cap zone found to contain low level of total-S (0.01-0.12%), acid leachable-S (0.00-0.08%) and NP (50% < 10kg/t),

- Petrographic analysis of 17 samples indicated the presence of barite, BaSO$_4$, which is non-acid leachable. Approximately 40% of total-S found to occur as barite,

- All samples of Leach Cap found to be NAG when barite is factored into AGP,

- All Leach Cap handled as NAG since early 2000,

- High metals leaching concern (Se) associated with Leach Cap.
Supergene

- A 10 m to 70 m band of altered quartz monzodiorite overlying the hypogene. Sulphides found to be essentially absent in material indicating full oxidation has already occurred. Copper mineralization includes presence of native copper,

- No potential for metals leaching found based on humidity cell testwork,

- Pre blast sampling conducted every 20,000 tonnes,

- Initial plan called for milling all supergene ore however the possibility of supergene waste being moved does exist.
Takla Volcanics

- This rock underlies the quartz monzodiorite intrusive. Contains penetrative chloritic alteration and has some economic mineralization,

- Rock found to have generally high sulphide-S (2-12%) and moderately low carbonate content (1-7%). Rock determined to be net acid generating,

- Pre blast and post blast sampling for this unit proposed to be conducted at same frequency as Asitka PAG materials,

- A total of 1.8 million tones of this material to be moved as waste based on current mine plan.
Prior to November 2005 all non-acid generating (NAG) waste rock was disposed of in the non-acid generating Waste Rock Dump. All Potentially Acid Generating (PAG) material excavated prior to November 2001 was hauled to the Tailings Storage Facility for subaqueous disposal,

In November 2001 all PAG rock was permitted for disposal in a temporary stockpile located to the south of the open pit. All PAG rock in this stockpile must be disposed in a flooded location,

In November 2005 permitting was obtained to allow for the disposal of all PAG and NAG waste rock into the eastern portion of the open pit to a maximum elevation of 1255 m. This has greatly reduced the waste haul distance.
Waste Dumps
Kemess Mines On-Site Static Testing

- Static Tests are conducted by the Kemess Mines Assay Lab.
- Static testing conducted at the site includes ABA and Shake Flask Tests.
Kinetic test work is conducted at the site in the Environmental Laboratory.

- Kinetic tests conducted in the lab include Humidity Cell Tests, Field Weathering Pads and column testing.
Field Leach Cell Testing

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Material</th>
<th>Date Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTP 1</td>
<td>Hypogene Waste Rock</td>
<td>1999</td>
</tr>
<tr>
<td>LTP 2</td>
<td>Leach Cap Rock</td>
<td>1999</td>
</tr>
<tr>
<td>LTP 3</td>
<td>Asitka Chert Rock</td>
<td>1999</td>
</tr>
<tr>
<td>LTP 4</td>
<td>Asitka Graphitic Rock</td>
<td>1999</td>
</tr>
<tr>
<td>LTP 5</td>
<td>Leach Cap Rock</td>
<td>2000</td>
</tr>
<tr>
<td>LTP 6</td>
<td>Leach Cap Rock</td>
<td>2000</td>
</tr>
<tr>
<td>LTP 7</td>
<td>Hypogene PAG Waste Rock</td>
<td>2002</td>
</tr>
<tr>
<td>LTP 8</td>
<td>Hypogene PAG Waste Rock</td>
<td>2002</td>
</tr>
<tr>
<td>LTP 9</td>
<td>Hypogene PAG Waste Rock</td>
<td>2002</td>
</tr>
<tr>
<td>LTP 10</td>
<td>Asitka Chert Talus</td>
<td>2003</td>
</tr>
<tr>
<td>LTP 11</td>
<td>Asitka Chert Talus</td>
<td>2003</td>
</tr>
<tr>
<td>LTP 12</td>
<td>Asitka Chert Talus with 10% Asitka Graphite</td>
<td>2003</td>
</tr>
<tr>
<td>LTP 13</td>
<td>Hypogene Cyclone Sands</td>
<td>2004</td>
</tr>
<tr>
<td>LTP 14</td>
<td>Toodoggone Sediments</td>
<td>2004</td>
</tr>
<tr>
<td>LTP 15</td>
<td>Takla Volcanic Rock</td>
<td>2005</td>
</tr>
<tr>
<td>LTP 16</td>
<td>Takla Volcanic Rock</td>
<td>2005</td>
</tr>
</tbody>
</table>
Field Leach Cell Testing

Initial Results

<table>
<thead>
<tr>
<th>Pad</th>
<th>Material</th>
<th>Total -S</th>
<th>MPA</th>
<th>% C</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTP 1</td>
<td>Hypogene Waste Rock</td>
<td>2.45</td>
<td>76.25</td>
<td>---</td>
<td>24.90</td>
</tr>
<tr>
<td>LTP 2</td>
<td>Leach Cap Rock</td>
<td>0.05</td>
<td>1.25</td>
<td>---</td>
<td>5.50</td>
</tr>
<tr>
<td>LTP 3</td>
<td>Asitka Chert Rock</td>
<td>2.41</td>
<td>75.31</td>
<td>0.22</td>
<td>18.30</td>
</tr>
<tr>
<td>LTP 4</td>
<td>Asitka Graphitic Rock</td>
<td>2.06</td>
<td>64.36</td>
<td>0.10</td>
<td>8.30</td>
</tr>
<tr>
<td>LTP 5</td>
<td>Leach Cap Rock</td>
<td>0.01</td>
<td>1.00</td>
<td>---</td>
<td>22.74</td>
</tr>
<tr>
<td>LTP 6</td>
<td>Leach Cap Rock</td>
<td>0.10</td>
<td>2.00</td>
<td>---</td>
<td>6.00</td>
</tr>
<tr>
<td>LTP 7</td>
<td>Hypogene PAG Waste Rock</td>
<td>2.55</td>
<td>79.69</td>
<td>0.52</td>
<td>55.83</td>
</tr>
<tr>
<td>LTP 8</td>
<td>Hypogene PAG Waste Rock</td>
<td>1.50</td>
<td>46.88</td>
<td>0.29</td>
<td>52.02</td>
</tr>
<tr>
<td>LTP 9</td>
<td>Hypogene PAG Waste Rock</td>
<td>1.85</td>
<td>57.81</td>
<td>0.34</td>
<td>53.03</td>
</tr>
<tr>
<td>LTP 10</td>
<td>Asitka Chert Talus</td>
<td>0.82</td>
<td>25.59</td>
<td>1.10</td>
<td>91.50</td>
</tr>
<tr>
<td>LTP 11</td>
<td>Asitka Chert Talus</td>
<td>2.21</td>
<td>69.06</td>
<td>0.14</td>
<td>11.30</td>
</tr>
<tr>
<td>LTP 12</td>
<td>Asitka Chert Talus with 10% Asitka Graphite</td>
<td>1.81</td>
<td>56.56</td>
<td>0.09</td>
<td>7.10</td>
</tr>
<tr>
<td>LTP 13</td>
<td>Hypogene Cyclone Sands</td>
<td>0.17</td>
<td>5.09</td>
<td>0.28</td>
<td>27.40</td>
</tr>
<tr>
<td>LTP 14</td>
<td>Toodoggone Sediments</td>
<td>0.12</td>
<td>3.28</td>
<td>0.55</td>
<td>43.30</td>
</tr>
<tr>
<td>LTP 15</td>
<td>Takla Volcanic Rock</td>
<td>1.59</td>
<td>49.69</td>
<td>0.46</td>
<td>52.00</td>
</tr>
<tr>
<td>LTP 16</td>
<td>Takla Volcanic Rock</td>
<td>3.74</td>
<td>116.88</td>
<td>0.59</td>
<td>62.40</td>
</tr>
</tbody>
</table>
Field Leach Cell

Leach Sulphate Data
Field Leach Cell

Leach Alkalinity Data

Field Leach Pad Alkalinity

- Graph showing the trend of Field Leach Pad Alkalinity over time from 7/24/1998 to 5/28/2005.
- Data points for LTP-1 to LTP-9 are represented by different colors.
- The x-axis represents dates, and the y-axis represents alkalinity values.
Field Leach Cell Results Materials Weathering

Graphitic Asitka Chert LTP-4: Acid Generating Potential (MPA) vs Neutralizing Potential (NP)

Kg CaCO3/Tonne

MPA
Sobek NP

Time

1998 1999 2000 2001 2002 2003 2004 2005
Field Leach Cell Results Materials Weathering

Asitka Chert TLP-3: Acid Generating Potential (MPA) vs Neutralizing Potential (NP)

![Graph showing changes in MPA and Sobek NP from 1998 to 2005.](image)
Field Leach Cell Results Materials Weathering

Leach Cap: Acid Generating Potential (MPA) vs Neutralizing Potential (NP)

<table>
<thead>
<tr>
<th>Year</th>
<th>LTP-2: MPA</th>
<th>LTP-2: Sobek NP</th>
<th>LTP-5: MPA</th>
<th>LTP-5: Sobek NP</th>
<th>LTP-6: MPA</th>
<th>LTP-6: Sobek NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>5.00</td>
<td>2.00</td>
<td>3.00</td>
<td>1.00</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>1999</td>
<td>5.50</td>
<td>2.50</td>
<td>3.50</td>
<td>1.50</td>
<td>4.50</td>
<td>2.50</td>
</tr>
<tr>
<td>2000</td>
<td>6.00</td>
<td>3.00</td>
<td>4.00</td>
<td>2.00</td>
<td>5.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2001</td>
<td>6.50</td>
<td>3.50</td>
<td>4.50</td>
<td>2.50</td>
<td>5.50</td>
<td>3.50</td>
</tr>
<tr>
<td>2002</td>
<td>7.00</td>
<td>4.00</td>
<td>5.00</td>
<td>3.00</td>
<td>6.00</td>
<td>4.00</td>
</tr>
<tr>
<td>2003</td>
<td>7.50</td>
<td>4.50</td>
<td>5.50</td>
<td>3.50</td>
<td>6.50</td>
<td>4.50</td>
</tr>
<tr>
<td>2004</td>
<td>8.00</td>
<td>5.00</td>
<td>6.00</td>
<td>4.00</td>
<td>7.00</td>
<td>5.00</td>
</tr>
<tr>
<td>2005</td>
<td>8.50</td>
<td>5.50</td>
<td>6.50</td>
<td>4.50</td>
<td>7.50</td>
<td>5.50</td>
</tr>
</tbody>
</table>

Time (Kg CaCO3/Tonnes)

Kg CaCO3/Tonnes
ARD/ML Modeling and Prediction

- Modeling is being conducted on stockpiles and areas of exposed sulphidic materials in the areas of the open pit and the Tailings Storage Facility,
- Models are developed both in-house and by third party consulting companies for materials tracking and predictive purposes,
- The prediction of post-closure water quality forms Condition 12 of the mine operating permit M-206,
- 3-D block models of the waste dumps are used to track components of the dumps.
PAG Dump Modelling
Case Study – Graphitic Asitka Material Handling

- Testing showed graphitic Asitka (GAG) material to be acid generating with a short estimated time to acidity (<8 years),

- Field pads of material showed evidence of acid generation within 2 years of establishment,

- Aerial storage pad containing approximately 4 million tonnes of graphitic PAG started in early 2002. Dump has been observed since construction for evidence of acid generation with possible vents noted during 2004 and 2005,

- Decision made to co-dispose of stockpiled GAG in a blended NAG/GAG dump in the eastern portion of the open pit. Sampling to be conducted during the excavation of the GAG materials to allow for determination of the ARD status of different portions of the GAG dump.
Final Pit without East End Dump
Final Pit with East End dump
East Side of Pit from West Side
East Dump Plan
Conclusion

- A comprehensive, workable permit is possible when the mining company and regulatory agencies work together.
- Well directed and focused testwork can result in substantial cost savings and an environmentally balanced mine.
- Planning is key to insure environmental viability and profitability.