
Rens Verburg
Golder Associates, Redmond, WA, USA
Presentation Overview

- Site Background
- Geochemical Testing Program
 - Bench-scale
 - Field cells
 - Water quality prediction
 - Ongoing work (pilot plant)
- Conclusions
Objective

- Identification and evaluation of practical disposal options and related handling/ engineering practices for surface tailings disposal
 - minimize environmental impacts (sulfide oxidation, seepage)
 - maximize geochemical stability and operational flexibility
 - cost effective
Background Neves Corvo Mine

- Underground high-grade Cu-(Sn-Zn) mine in Iberian Pyrite Belt
- Eurozinc (Somincor)
- Volcanogenic Massive Sulfide (VMS)
- Five lenticular ore bodies (approx. 5% Cu)
- Production since 1989
- Dominant ore minerals
 - Pyrite, chalcopyrite, sphalerite, galena, cassiterite, stannite, tetrahedrite, arsenopyrite
Tailings Management

- Underground paste backfill and in unlined tailings impoundment (135 ha, 15 Mt)
- Production of 42 Mt anticipated (14 Mt underground)
- Sustainable operational and post-closure tailings management: dry disposal vs. subaqueous deposition
 - No requirement for new dam raises (cost, risk)
 - No increase in footprint
 - No requirement for maintaining pond in perpetuity (arid climate)
 - Co-mixing with PAG waste rock
 - Concurrent reclamation
 - Regulatory pressures
Cerro do Lobo Impoundment
Tailings Characteristics

- ≈ 30 wt% total sulfur (≈ pyrite sulfur)
- pyrite + quartz + kaolinite > 90%
- AP: ≈ 910 kg CaCO$_3$/ton
- NP: ≈ 30 kg CaCO$_3$/ton
- Fine tailings: 60-70% < 20 micron
(Pre-)Feasibility Study

- Review of similar projects worldwide
- Conceptual design of placement options
- Evaluation of potential impacts to downgradient aquifer due to change in disposal method
- Geotechnical testing program
- Geochemical testing program
 - Bench-scale program
 - Field cells
 - Pilot plant
Bench-Scale Testing Program

- Evaluate environmental stability of tailings mixtures
- Focus on sulfide oxidation and acid generation as function of:
 - Moisture content
 - Amendment
- Cheap, rapid, easily-implementable
- Testing program not designed for rigorous quantitative evaluation
Bench-Scale Testing

- Twenty-four tailings samples
- Moisture content
 - Filter cake
 - Agitated filter cake
 - 150-mm slump paste
 - 250-mm slump paste
- Amendment
 - None
 - Lime (0.5 and 1.0 percent)
 - Portland cement (0.5 and 1.0 percent)
 - Bactericide - Promac® (1.0 percent)
- Control sample (silica sand)
Bench-Scale Testing

- Monitored conditions in Somincor laboratory
- 2-kg samples in plastic containers
- Measurement of temperature, paste pH, paste SC
- 30 weeks of testing
- Undisturbed (except agitated samples)
- Not intended to maintain constant ambient conditions and quantitatively control moisture content
Laboratory Set-Up
Unamended - pH

- silica sand
- filter cake
- filter cake-agitated
- 150-mm slump
- 250-mm slump

Test Day vs. pH (s.u.)
250-mm Slump - pH

![Graph showing pH over test days with different conditions: silica sand, unamended, bactericide, 0.5 wt % cement, 1 wt % cement, 0.5 wt % lime, 1 wt % lime.](image)
Summary of Bench-Scale Results

- Results generally consistent with expected relationships between moisture content, amendment, and sulfide oxidation
 - Best performance for highest moisture content
 - Lime/cement provide early buffering capacity but not for long term
 - Lime/cement do not affect oxidation rate
 - Differences between lime/cement minor
 - Bactericide shows short-term benefit
Field Trials

- Field testing program
 - 250-mm slump (unamended)
 - 250-mm slump (bactericide)
 - 250-mm slump (0.5 percent cement)
- Two sets
 - Periodic irrigation
 - Ambient conditions
- Monitoring of overflow and underflow water quality
Cell Configuration

[Diagram showing the cell configuration with layers labeled HDPE, Terram1000, needle-punched non-woven geotextile, clean silica gravel, and slotted 4" PVC pipe.]

[Diagram showing the cross-sectional view with dimensions 3m x 3m and 1m x 0.3m.]
Irrigation and Sampling
pH Trends Underflow

The graph illustrates the pH trends over test days for various samples:

- Ambient Paste
- Ambient Promac
- Ambient Cement
- Irrigated Paste
- Irrigated Promac
- Irrigated Cement

The pH values range from 2.0 to 12.0, with test days ranging from 0 to 1000.
Summary of Field Cell Results

- Majority of ambient and irrigation water report as runoff
- Seepage volumes reflect short-circuiting: chemical evolution governed by flow regime
- Differences in geochemical performance more pronounced between irrigated/ambient cells than between amended/unamended cells
- Lag time for acidic conditions in irrigated cells (7 months) provides benchmark for operational paste placement and closure
- What is long-term seepage quality?
Sequence of Mineral Reactions

![Graph showing the sequence of mineral reactions over time steps.](image-url)
Buffering Sequence and pH Trend

Time Steps

Pore Water pH (s.u.)

Calcite
Siderite
Kaolinite
AlOHSO$_4$
Comparison Modeled and Observed Trends

![Graph](image-url)
Discrepancies

- Equilibrium vs. kinetics: kaolinite dissolution not effective due to short-circuiting
- Incomplete mineralogy
 - Fe-carbonate instead of calcite
 - Unidentified secondary phase controlling sulfate
What is Long-Term Seepage Quality?

- Evidence from bench-scale testing
- Buffering by kaolinite supported by supernatants of unamended samples (pH 3.5 to 3.8)
- Good agreement between predicted metal concentration from field cell (pH/metal relationships) and supernatants
- If paste disposal and closure conducted in accordance with BMPs, supernatant reasonable representation of long-term seepage quality
Ongoing Work

- **Pilot plant testing**
 - 20m³/hr production in Deep Cone Thickener (DCT)
 - 35,000 m³ in 1-hectare area
 - Experience with plant operation/placement
- **Environmental monitoring**
 - Suction lysimeters, piezometers, standpipes
 - Runoff collection
- **Geotechnical monitoring**
 - Tensiometers
 - Berm design
- **Trials of cover designs**
 - Store/release without capillary break
 - Store/release with capillary break
 - Infiltration barrier (sand/bentonite)
Overview of Pilot Plant Area
Preliminary Conclusions

- Investigation to date supports use of paste as viable disposal alternative
- Potential benefits
 - Flexibility in siting, disposal, reclamation strategy
 - Reduced leachate generation
 - Elimination of water cover
 - Co-mixing with waste rock
- Paste placement needs to maximize two key beneficial properties:
 - high degree of saturation
 - low permeability
- Water management (in particular runoff) will govern placement protocol
Conceptual Paste Placement

Early stage of filling
Conceptual Paste Placement (cont’d)
Conceptual Paste Placement (cont’d)

Nearing final paste placement
Acknowledgements

- Mark Fordham – Somincor Project Manager
- Phil Newman – Golder Project Manager