Case Studies that Illustrate the Benefits, Limitations and Information Requirements of Geochemical Modelling

Jeff Martin
Gerd Wiatzka
Jeno Scharer
Bruce Halbert
of
SENES Consultants Limited

Presentation to 12th Annual BC/MEND Workshop
1 December 2005
Background

- Ontario Mine Rehabilitation Code states that BC Guidelines are to be followed for ML/ARD assessment
- CANMET requested comments for update to Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage
- SENES commented with respect to geochemical modelling, as 1998 guideline gave didn’t fully address benefits
- This presentation will address benefits and limitations
Geochemical Modelling - SENES

- 1986 UTAP – Uranium Tailings Assessment Program for NUTP
- 1989 RATAP – Reactive Acid Tailings Assessment Program for MEND
- 1992 ACIDROCK and ROCKSTAR
 - SENES models
 - Updated periodically
- ROCKSTAR – dynamic geochemical model – multi-nodal – up to 20 interconnected, layered compartments
 - Waste rock, tailings, pits, underground mines
ROCKSTAR

◆ Considers:
 - Acid generation due to biological and chemical oxidation of sulphides
 - Diffusion of oxygen into wastes
 - Convection of oxygen into wastes
 - Production and transport of heat
 - Metal leaching
 - Transport of dissolved chemical species
 - Dissolution of buffering minerals
 - Formation of secondary minerals
 - Solubility of solid phases (precipitates, minerals)
 - Speciation of dissolved constituents
 - pH
 - Solid solutions, adsorption of metals, co-precipitation
ROCKSTAR

- Monthly time steps
- Initial inventory module
- Kinetics module
 - Sulphide oxidation and dissolution of buffering
- Transport module
 - Oxygen, temperature, solute
- pH calculation and aqueous ions speciation module
 - pH, buffering minerals, co-precipitates, solid solutions
- Trace metals and radionuclides module
- Material balance module
- Acidity module
General Approach to Mathematical Prediction

- Identify objectives
- Collect and review data
- Select models
- Prepare inputs
- Calibrate model to field data
- Perform simulations
- Interpret
 - Identify controlling processes
 - Compare to concentrations at similar sites
 - Compare to estimates using alternate approach
Benefits

- provide insight into potential future conditions
- determine which variables are most important in determining future conditions
- assess the effects of alternative approaches to decommissioning
- assess the potential effects of not knowing one or more parameters very well (sensitivity and uncertainty analysis)
- direct field and laboratory studies to provide the information necessary to make decisions, for example, regarding the effects of alternative closure options
- Integrates available information to predict what could happen
 - EAs
Limitations

- Insufficient data
- Can be challenging and can be misinterpreted
 - What is the alternative?
 - Essential that limitations of the predictive methods be clearly described and that model predictions be evaluated
- Uncertainty and variability
 - Deterministic vs. probabilistic modelling – Monte Carlo analysis
- Important that potential sources of uncertainty in predictive models be described and where practical evaluated quantitatively
- Guidance for practitioners, industry and regulators on alternative methods of evaluation, when they might be applied and how to address uncertainties is needed.
- Model versus actual conditions
Information Requirements

- Climate
- Hydrology
- Hydrogeology
- Water Quality
- Physical Layout
- Waste characteristics
- Cover characteristics
- Management alternatives
Case Study – Crean Hill Mine

- Located 28 km west of Sudbury, Ontario
- Mined from 1970s to 2002
- South Range nickel-copper contact deposit, underground and open pits
- 3 pits connected to underground workings: West, Main, and Intermediate
- Pits being backfilled with acidic waste rock from various sources – lime added
CREAN HILL MINE SITE AND PIT WATERSHEDS
Crean Hill waste rock relocation
Crean Hill waste rock relocation
LEGEND:

- OPEN PIT/GLORY HOLE OUTLINES PROVIDED BY INCO LIMITED
- FILLED LEVELS PROVIDED BY INCO LIMITED
 (FROM MAY 2001 BASE AERIAL PHOTOGRAPH)
- FILL LEVELS TAKEN FROM ENGINEERING SECTIONS
 (UPDATED JANUARY 2002)

REFERENCES:

THIS DRAWING IS BASED ON CREAN HILL MINE SURFACE PITS LONGITUDINAL CROSS-SECTION,
DATED APRIL 29, 1993, (CH-OPIT.DWG).
Modelling Approach

- 3 pits and 3+ compartments in each: unsaturated zone, hydraulically active saturated zone, and inactive deep groundwater zone
- Flow from West and Main pits to Intermediate pit at 300 Level (bottom of active zone)
- Minimal contribution below 300 Level
CONCEPTUAL FLOW MODEL OF THE CREAN HILL MINE:
CROSS-SECTION OF THREE PITS LOOKING NORTH

Infiltration/Recharge:
Surface infiltration into Pit Compartments 1, 2, and 3 is listed as Recharge 1, 2 and 3. Surface Infiltration from the Stagnant/Slimes Pond Catchment Area enters directly into compartment 18 and is listed as Recharge 4.
Groundwater Seepage is input as deep groundwater to compartments 7 and 12 (listed as Seep 7 and 12).

Discharge:
The total net discharge overflowing from the Intermediate Pit exits from compartment 20.

*Figure is not to scale.
Waste Characterization

- **physical characteristics:** grain-size distribution, porosity, unsaturated water content, and oxygen diffusion coefficient
- **Geochemical characteristics:**
 - whole rock
 - Nitric acid and hydrogen peroxide extraction with hydrochloric acid: indication of the total leachable metals, including metals associated with secondary precipitates and primary sulphides
 - Acid base accounting (ABA): interpreted to estimate the sulphide content, sulphate content, carbonate content, and net neutralization potential
 - Hydroxylamine hydrochloride (HHCl) extraction: data provide a relative measure of the readily leachable metals associated with reducible oxides such as iron and manganese-oxyhydroxides
 - Distilled water extraction (DWE): extracted metals and sulphate data provide an estimate of the pore-water conditions prevalent in the waste rock prior to liming as well as the leachability of metals and sulphate
 - Rinse pH: used to assess the geochemical conditions of the waste rock during sampling in the field, prior to liming
- **Mineralogy**
- Could also use dynamic test results
Scenarios Modelled

- 4 scenarios modelled to consider effects of run-off diversion and cover options on water quality
- Scenarios chosen to cover a range of infiltration rates that are reasonably achievable
Scenarios – Crean Hill

1. Uncovered pits with no diversion of runoff. It was assumed that 60% of precipitation falling directly on the uncovered pits will infiltrate, and that 60% of precipitation on the pit catchments will flow into the pits. It is assumed that no runoff would be diverted from the pits.

2. Same as Scenario 1, however 100% of the Stagnant-Slimes Pond Catchment was assumed to be diverted away from the Intermediate Pit.

3. Cover Scenario 1: Stagnant-Slimes Pond Catchment diverted 100%. 50% diversion of runoff from each pit catchment. Infiltration through the pit surface area reduced by 50% (equivalent to 30% of precipitation).

4. Cover Scenario 2: Stagnant-Slimes Pond Catchment diverted 100%. 50% diversion of runoff from each pit catchment. Infiltration through the pit surface area reduced by 75% (equivalent to 15% of precipitation).
PREDICTED WATER QUALITY FOR THE INTERMEDIATE PIT OVERFLOW
SHORT TERM

Aluminum (aq)

Copper (aq)

Nickel (aq)

Zinc (aq)

Graphs showing predicted water quality for the intermediate pit overflow over a short term, with data for aluminum, copper, nickel, and zinc. Each graph includes a baseline scenario and three different scenarios (2, 3, and 4) over a time period of 60 months.
PREDICTED WATER QUALITY FOR THE INTERMEDIATE PIT OVERFLOW
LONG TERM

Aluminum (aq)

Copper (aq)

Nickel (aq)

Zinc (aq)
Conclusions

- Diversion of Stagnant Pond will reduce loadings, but not proportionately.
- Diversion of runoff and reduction of infiltration to Main Pit and West Pit had greatest impact on loadings.
- Model relatively insensitive to oxygen diffusion coefficient for cover over unsaturated waste rock layer.
Case Study – Kam Kotia

- Copper, zinc, gold & silver producer
- Intermittent production from 40s to 70s
- Ontario MNDM conducting phased rehabilitation of this abandoned mine site
Kam Kotia North Impounded Tailings
Design / Modelling of Composite Cover

◆ **Objective – Select cover to:**
 - Minimize infiltration to tailings to reduce volumes requiring treatment
 - Inhibit further ARD by minimizing oxygen ingress
 - Use native materials (if acceptable performance)
Available Cover Materials

- Synthetic
- PVC
- HDPE
- GCL (geosynthetic clay liner)
Geochemical Modelling - Urantail

- Detailed geochemical model developed by SENES to examine the generation of acid mine drainage and the release of contaminants from tailings
- Theoretical basis similar to Acidrock and Rockstar
- Can be applied to simulate geochemical processes occurring with acid-generating tailings, and to examine wet and dry closure alternatives, such as flooded tailings versus simple to complex engineered covers.
Preliminary Geochemical Modelling

- **Initial Phase – 4 covers modelled**
 - Clay Cover 1 - 0.3 m Rock/0.3 m Granular/0.5 m Clay/0.5 m Granular
 - Clay Cover 2 - 0.3 m Rock/0.3 m Granular/1.0 m Clay/0.5 m Granular
 - GCL Cover - 0.3 m Rock/0.3 m Granular/GCL/0.5 m Granular Cover
 - Polymer Liner Cover - 0.3 m Rock/0.3 m Granular/PVC Liner/0.5 m Granular Cover

- **Conclusion** - all covers would significantly reduce treatment requirements, based on assumptions
Detailed Material Characterization and Follow-up Modelling

- Clay
 - permeability higher than initially estimated
 - permeability increased additional 2 orders of magnitude with freeze-thaw action

- Uncertainty in clay performance modelled by assuming a range of infiltration and oxygen diffusion coefficients
 - Deterministic, could have also modelled probabilistically
Predicted Seepage Load from NIT - Acidity

Acidity (tonnes/y)

Year

Base Case
0.18m/y
0.12m/y
0.06m/y
0.06m/y Bentonite
Final Proposed Design

- 0.1 m Topsoil
- 0.5 m Granular
- 0.3 m Clay
- GCL with polyethylene coating
- 0.3 m Granular
- 0.3 m Waste Rock
Conclusion – Geochemical Modelling

Benefits
- insight into potential future conditions
- determine which variables are most important in determining future conditions
- assess the effects of alternative approaches to decommissioning
- assess the potential effects of not knowing one or more parameters very well
- direct field and laboratory studies
- Integrates available information

Limitations
- Insufficient data
- Can be challenging and can be misinterpreted
 - What is the alternative?
 - Essential that limitations be clearly described
- Uncertainty and variability
 - Probabilistic vs. deterministic modelling – Monte Carlo analysis
 - Important that potential sources of uncertainty in predictive models be described and where practicable evaluated quantitatively
- Guidance on alternative methods of evaluation, when they might be applied and how to address uncertainties is needed
- Model versus actual conditions
Additional Information

- Technical Description – Rockstar Reactive Transport Model
 - included on Workshop CD
- Contact:
 - jmartin@senes.ca
 - 905 764 9389 x 349
Acknowledgements

- Lisa Lanteigne, Inco Limited (Crean Hill)
- Chris Hamblin, Ontario Ministry of Northern Development and Mines (Kam Kotia)
- Andrew Mitchell, Wardrop (Kam Kotia)