Introduction to the Selbaie Mine Reclamation and Role of the Pit

Bert J Huls and Denis Caron

13th ML/ARD 2006 2nd/2ième Ann.
Vancouver, November 29 and 30th, 2006
La Sarre load out facility

Central Pond at Selbaie

Selbaie Pit
Selbaie History

Remote location, part of James Bay municipality, Producer of copper (~24 % Cu, 9% Zn, 1.5 % Pb) and zinc concentrates (~55% Zn, ~1.2% Cu and ~1.1 % Pb)

• 1978-81 Development by HBO&G
• 1985 BP, Esso, TCP partnership
• 1989 Billiton acquires Esso share
• 1992 Billiton acquires 100%
• 1994 Gencor acquires Billiton – building East Waste Pile
• 1996 building West Low Grade Pile
• 2001 BHP Billiton merger
• December 2001, closure of pit operation, processing of stockpiles
• 2004 January Operations ceased – Start reclamation program
• 2006 Completion of Reclamation program
Selbaie Reclamation Programme

Strategy to minimize sources of ARD that require treatment:
- Prevent ARD from tailings,
- Eliminate other ARD sources
- Single source of ARD from the mine waste rock pile

Plan Elements:
- Waste Rock and tailings pond Cover: stabilize and vegetate
- Cleanup of ARD spills during operations (East and West)
- Excavation of ARD waste, site vegetation
- Ditching, ARD collection, buried drain and pump stations
- Lime treatment plant
- Treatment of hydrocarbon contaminated soils
- Environmental monitoring
Removed nearly 2 million m^3 of metal-contaminated soil
31,225 m³ of hydrocarbon-contaminated soil have been excavated from:
(a) Camp site (25,000 m³)
(b) Industrial site (6,225 m³)
Biopile dimensions 235 x 62 x 2.5 meters, with total bulk volume of 35,000 m3 filled to capacity.

Area about 120 X 60 m, up to 17 m deep.

Treatment Process: *Ex Situ* Biopile.
Role of pit

- Deposition of tailings from Sept 2001 to closure in Jan 2004 of operation
- Deposition of East/West peat excavations, low grade contaminated rock & soils
- Clarify treated water, sludge storage
- Sludge storage capacity greater than 100 years
Summer 2005 – Questions Remained on Pit Lake

- Rate of pit water filling and year/season it begins to overflow
- Pit water quality limits for discharge met except for Zinc
 --Zinc limit 0.5 mg/L vs 10 mg/L--
- Waste materials effect on zinc levels as pit fills (lake pH less than 8)
- Ability to achieve zinc levels through effluent from Water Treatment Plant alone to gradually raise pH
- Surface and groundwater inputs of dissolved zinc and compliance risk
Studies and measures initiated to remediate pit lake water and understand future behaviour

- Pit lake hydrology (SNCL)
- Defining source terms (Ecometrix)
- Pit lake model (Lorax)
- In-situ treatment of pit lake (Enviraube and SNCL)
Following presentations

• Ron Nicholson, Ecometrix
 – characterization of the contaminated soil and peat placed in the pit, and potential effect on pit lake water quality

• David Flather, Lorax
 – pit lake model results based on the information provided by Selbaie, SNCL, Ecometrix and on their own measurements and observations

• Bernie Aubé, Enviraube
 – the effects of the in-situ lime treatment and resulting sampling profiles

• Denis Caron, Selbaie
 – closing discussion on contingency and mitigation plan