The importance of point and diffuse pollution in developing management strategies for long-abandoned deep coal and metal mines in the UK

Adam P. Jarvis¹*, Emma Gozzard¹, William M. Mayes¹ and Hugh A.B. Potter²

¹Hydrogeochemical Engineering Research & Outreach, Institute for Research on Environment & Sustainability, Newcastle University, UK, NE1 7RU
²Environment Agency, address as above

*Contact: e-mail: a.p.jarvis@ncl.ac.uk; Tel: +44 (0)191 246 4871; web: http://www.ncl.ac.uk/environment/research/HEROGroup.htm

13th Annual British Columbia MEND ML/ARD Workshop, Vancouver, 29-30 November 2006
Background

• In Europe, the Water Framework Directive (2000/60/EC) (WFD) is the most important legislative instrument relating to the water environment ever introduced.

• The WFD necessitates surface and ground waters to be of ‘good chemical and ecological status’ by 2015.

• Assessment is based on river catchments.

• In seeking to achieve this, the first step of the regulators in the UK has been to conduct a pressure and impact assessment exercise.

• In addition to looking specifically at phosphorus, nitrogen, pesticides etc, mine waters have been assessed.
Table 1. Summary statistics of the England & Wales Environment Agency’s draft pressure assessment for mine waters.

<table>
<thead>
<tr>
<th>Risk of failing WFD objectives</th>
<th>Rivers</th>
<th>Groundwaters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of waterbodies</td>
<td>River length (km)</td>
</tr>
<tr>
<td>At risk¹</td>
<td>139</td>
<td>1822</td>
</tr>
<tr>
<td>Probably at risk²</td>
<td>87</td>
<td>1714</td>
</tr>
<tr>
<td>Probably not at risk³</td>
<td>512</td>
<td>6709</td>
</tr>
</tbody>
</table>

1. At risk - At risk of not achieving WFD objectives by 2015 (high certainty)
2. Probably at risk - Probably at risk of not achieving WFD objectives, but further information is required to make sure (lower certainty)
3. Probably not at risk - Probably not at risk of not achieving WFD objectives, but further information is required to make sure (lower certainty)
Background

• In former mining districts of the UK, WFD objectives are unlikely to be met due to mine water pollution.

• For the last 12 years the UK Coal Authority has undertaken a rolling programme of treatment initiatives for abandoned coal mine waters (approximately 40 treatment systems to date).

• However, these systems only address point sources of mine water pollution.

• Preliminary assessments have suggested that diffuse mine water pollution might be a serious problem, and an impediment to meeting WFD targets.
Introduction

• The objective of current work at Newcastle is to quantify the extent and nature of diffuse mine water pollution, with a view to developing monitoring and management strategies for such pollution problems.

• The focus of the studies has been two river basins in the North east of England:

 - The River Gaunless catchment, an area of former deep coal mining

 - The River Allen catchment, an area of historic deep mining for lead and zinc

• The purpose of the talk is to illustrate the results and implications of these complimentary studies.
Study sites

River Allen catchment

River Gaunless catchment

20 miles (approx.)
Study sites

• River Gaunless is a major tributary of the River Wear, in the southern portion of the Durham Coalfield

• The 93 km² catchment is entirely underlain by Coal Measures and heavily mined for >150 years prior to 1976

• Phases of abandonment in 1920s and 1960s; final cessation of pumping to affect catchment was in 1975, and most recent new discharges commenced flowing in 1981

• River Gaunless receives several point discharges from numerous abandoned mines

• Total Fe concentrations instream rarely <0.5mg/L and large reaches of catchment perennially ochre-stained
Study sites

• The River Allen is a 190 km² catchment, and a major tributary of the River Tyne

• It was mined for lead and zinc from 17th century until 1970s

• Underlain by Carboniferous limestone

• Hydrology and hydrochemistry of the river is deeply influenced by mining history

• Both the River East and West Allen receive point sources of mine water pollution, the principal contaminant being zinc
Methodology

• Reconnaissance sampling
• Synchronous monitoring of contaminant loads at instream sample stations and point mine water sources
• Selected sampling and analysis of river sediments
• Offers insight to specific locations and mechanisms of diffuse input to channel in addition to instream attenuation processes

Point mine water discharge at Bishop’s Park, River Gaunless
River Gaunless: Results

Legend

Instream Fe concentration
- 0.1 mg/L
- 0.5 mg/L
- 1.0 mg/L
- 5.0 mg/L

Dissolved
Particulate

Catchment boundary
River

Legend

Instream Fe concentration
- 0.1 mg/L
- 0.5 mg/L
- 1.0 mg/L
- 5.0 mg/L

Dissolved
Particulate

Catchment boundary
River

A

Newcastle University
Low Flow

B

High Flow
River Gaunless: Low flow Fe loadings

Mean low flow (<Q70) instream Fe loadings and concentrations alongside point MW contribution

0 5 10 15 20 25
Distance from source (km)

Woolly Hill MW
Lowlands MW
St Helen MW
Bishop’s Park MW

Total Fe load (g/s)
Cumulative point MW contribution (g/s)
Total Fe concentration (mg/L)

Large increase in loading not associated with point MW
Instream attenuation of Fe
Instream rise associated with point MW

13th Annual British Columbia MEND ML/ARD Workshop, Vancouver, 29-30 November 2006
River Gaunless: Low flow Fe loadings

Low Flow

• Point discharges of mine water account for >60% of the in-stream loading in the upper catchment

• Lowlands mine water accounts for >100% of the in-stream rise in Fe i.e. immediate loss of Fe as ochre on stream bed

• Direct groundwater input in the lower catchment appears to be significant
Low flow loadings of chemical species indicative of groundwater sources

Mean groundwater level in Coal Measures in vicinity of St Helen Auckland - Hummer Beck = 100-108mAOD

Longitudinal profile of Gaunless riverbed

River Gaunless Groundwater input
The lower reaches of the River Gaunless
During high flow conditions point sources account for < 5% of the total iron loading in much of the river.
River Gaunless: High flow Fe loadings

• Consistent ↑ in Fe concentration (and therefore large ↑ in loading) downstream

• Point sources account for <5% in-stream Fe

• Principal sources:
 - Spoil heap runoff
 - Re-mobilised Fe from stream bed (particularly from reaches downstream of point mine waters)
 - Non-mining related terrestrial sources (e.g. peat erosion, runoff from Fe-rich strata)
 - Highways runoff (sodium hexacyanoferrate used as anti-caking agent in deicing salts) in lower catchment

• Future event-based sampling
The River Allen catchment
River West Allen: Low flow Zn loadings

A major source of in-stream Zn load, attenuated downstream during low flow conditions.

~Q90 event
River West Allen: High flow
Zn loadings

Huge discrepancy between Zn load associated with point sources and in-stream load during high flow

\(\approx Q_5 \) event
River West Allen: High flow
Zn loadings

• 90% total Zn load attributed to diffuse sources

• Site 20 still major input - accounts for 61% increase in total Zn load in-stream

• Zn increase d/s of point sources due to sediment re-suspension / remobilisation and spoil heap run-off?
River West Allen: sediment XRF

- No set sediment quality guidelines in UK
- TEL guidelines from Canada
 - Zn: 123 mg/kg
 - Pb: 35 mg/kg
- Zn exceeds by factor of 15
- Pb exceeds by factor of 35
- Ongoing Tessier extractions indicating Zn concentrations much higher than these at certain locations
Conclusions and ongoing work

• Both studies highlight the dynamic importance of diffuse sources under different flow conditions

• High flows exacerbate diffuse inputs

• Low flow diffuse inputs potentially more important for quality purposes

• Clear issues for WFD compliance in terms of cost-effective monitoring and management for diffuse pollution from former deep mining districts

• Wider remediation issues and technology gap needs addressing
Conclusions and ongoing work

Ongoing research in the Gaunless and Allen:

- Continued sampling under varying flow conditions

- Event-based sampling

- Sediment analysis

- Geochemical modelling / laboratory experimentation to determine likelihood of remobilisation of metals from previously deposited sediment

- Zn removal trials
Acknowledgements

The Environment Agency (England & Wales) has funded much of our work in both the Gaunless and River Allen catchments.

In the River Allen site access has been kindly facilitated by Allendale Estates and Whitfield Estates.

Jane Davis and Patrick Orme have provided invaluable assistance with field and laboratory analyses.