Optimizing In-Pit Disposal of Problematic Waste Rock using Leaching Tests, Portable XRF, Block and Mass Transport Models

Frederic Guerin and Steve Wilson
AREVA Resources Canada Inc.

Ronald Nicholson
Ecometrix Inc.

13th Annual British Columbia
MEND /ML/ARD Workshop
November 29, 2006
OUTLINE

◆ CONTEXT
 ◆ Open Pit Mining of Uranium Deposits
 ◆ Decommissioning Strategy

◆ WASTE ROCK CHARACTERIZATION
 ◆ Arsenic : Laboratory testing
 ◆ Volumes : Block Models

◆ POST-DECOMMISSIONING
 ◆ Groundwater Flow and Mass Transport Conditions

◆ WASTE ROCK SEGREGATION DURING MINING
 ◆ Portable XRF

◆ CONCLUSION
Uranium Mine Locations in Saskatchewan, Canada
Sue Mining Area – McClean Lake Operation

Caribou

Sue C
Waste Rock Pile

Sue E
Waste Rock Pile

Sue E
Decommissioning Strategy

Clean Waste Rock – Above ground

In Pit Disposal of Problematic Waste Rock
Problematic Waste Rock vs Clean Waste Rock

◆ Mineralogical Context

◆ Uranium: oxide, silicate

◆ Arsenic, Nickel: variations within the system Ni-As-S-Fe (NiAs, NiAs₂, NiAsS, ...)

◆ Definition

◆ Problematic Waste Rock: material that contains between 250 mg/kg and ~ 850 mg/kg U, or has been identified as having acid generating potential, or contains greater than (75 to 250) mg/kg Arsenic

◆ Clean Waste Rock
 = Total Rock – Ore – Problematic Waste Rock
Waste Rock Characterization

◆ Objectives

◆ Source term definition for impact (mass transport) assessment models

◆ Methods

◆ Sequential leach tests => Leachable mass
◆ Column tests => Initial concentration (C0)
◆ Flow model => Flow through placed waste rock
◆ Assumption => Shape of source term function

Mass released

\[= \int_{0}^{T_{\text{max}}} \text{Flow} \cdot C_0 \cdot \exp(-\beta \cdot t) \, dt \]
Waste Rock Characterization - Sequential Leach tests

- **Leachable Mass**
 - **Short Term =** Water leachable mass
 - **Longer Term =** Water + acid leach steps

- Water to Solid ratio of 20:1 (50 g / 1 L)
- Agitation
- Leach 1: de-ionized water for 48 hrs
- Leach 2: de-ionized water for 48 hrs
- Leach 3: weak Hydrochloric or Phosphoric acids for 72 hrs
Water Leachable Concentrations vs Metal Content in the Waste Rock

- As - Independent of age and degree of oxidation
- U, Ni - Highest water leachable concentrations associated with aged samples
Minimum volume (0.15 litres) sampled bi-weekly and submitted for chemical analysis.

Sample volume replaced.

Waste Rock

~ 20 kg

Water

~ 6L

N\textsubscript{2} Conditions

0.75m
Initial Pore Water Concentrations vs Solid Content

Graph 1:
- **Y-axis:** Pore Water (mg/L)
- **X-axis:** Time (wk)
- **Legend:**
 - As
 - Ni
 - U
- **Data:** Column A: As=1630 ug/g, Ni=780 ug/g, U=498 ug/g

Graph 2:
- **Y-axis:** Pore Water (mg/L)
- **X-axis:** Solid content (mg/kg)
- **Equation:** \(y = 0.001x^{1.6144} \)
- **R²:** 0.9124
- **Note:** Correlation independent of age of rock samples
Problematic Waste Rock – Bloc Modelling

- **Conservative Approach:** Assumptions that tend to maximize the amount of problematic waste rock

![Diagram of waste rock with concentration data](image)

Maximum concentrations (10m x 10m x 3m)

- **Bench elevation (masl)**
- **By/kg**
- **Uranium**
- **Arsenic**
- **Nickel**
Post Decommissioning – Ground Water Flow Conditions
Post Decommissioning - Particle Path Analysis
Post Decommissioning – Mass Transport

Typical Source Term Function

Mass released

\[\int_{0}^{T_{\text{max}}} \text{Flow} \cdot C_{0} \cdot \exp(-\beta \cdot t) \, dt \]

Typical Breakthrough Curve

As Source Term - Waste Rock Pore Water Concentration

C0 (from column tests)

\[\beta \]

As Concentration (ug/L)

Candy
Telephone
Collins Creek

Time (years)
Waste Rock Segregation

◆ OBJECTIVES
 - To Minimize the Volume of Problematic Waste Rock to be disposed in pit
 - To ensure that the Clean Waste Rock is Clean

◆ CONSTRAINTS
 - Field Conditions
 - Results in ~ 24 hours

◆ SELECTED APPROACH
 - Sampling of Blast Hole Cuttings
 - Traditional Approach – Radiometric Scanning for U
 - New Development - XRF technology for As detection
Waste Rock Segregation - Blast Pattern
Waste Rock Segregation - Sampling

Field Radiometric Scanning

Sampling for XRF Analysis
Waste Rock Segregation - XRF Analyser
Correlation Portable XRF - Laboratory

Sue A - Blast holes/Bench 406 - Systematic Comparison

Arsenic (mg/kg)

Samples #

Arsenic – Sue A Pit

mg/kg

Bench/composite
In-pit disposal of uranium mine rock in northern Saskatchewan is the primary strategy for mitigation of acid drainage from potentially reactive mine rock. However: Arsenic can be leached and subsequently transported in the groundwater flow system when the rock is submerged in water.
Assessment Stage: Conservative Approach to Develop Source Term, Flow and Mass Transport Scenarios

During Mining: Waste Rock Segregation based on XRF and Radiometric Scanning is a promising approach to optimize waste rock management