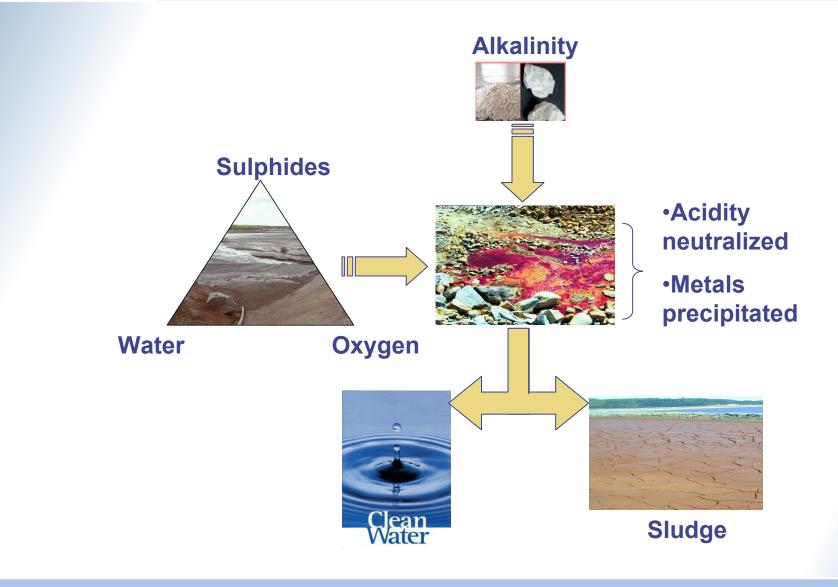


MEND Workshop – Halifax – May 2006

Update on Treatment Sludge Management: Properties, Stability and Options for Disposal

Janice Zinck


General Outline

- Characterization
 - Sludge properties
- Sludge stability
 - Factors affecting stability
- Sludge management options
 - Disposal
 - Reprocessing
 - Reuse

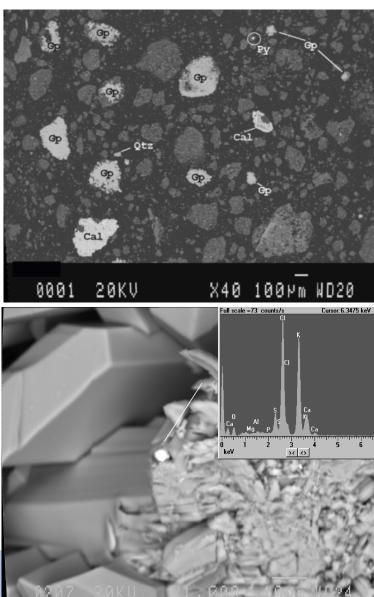
Natural Resources Ressources naturelles Canada Canada

MALLE

- La That a to a the

Issues

- Volume
 - ~6.7 million m³ sludge/yr (1995)
- Low percent solids
- Long-term stability?
 - amorphous
 - metal speciation
 - gypsum/calcite
- Physical stability



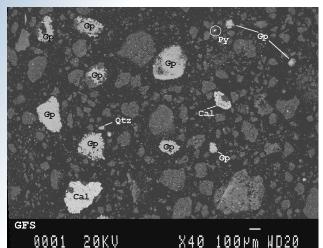
Sludge Properties

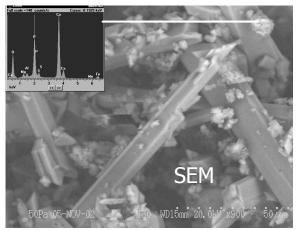
- 2-35% solids
- amorphous mass containing most metals (Fe, Zn, Cu, Cd...)
- calcite, gypsum
- 2-40 µm
- pH 8.5 to 11
- neutralization potential
 - 100-900 CaCO₃ equiv.

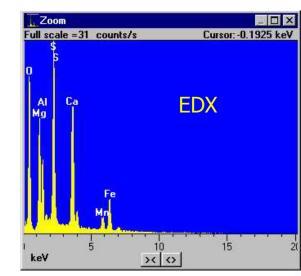
Ressources naturelles Canada

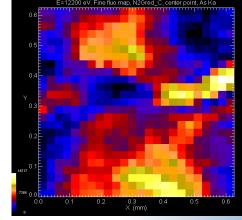
Sludge Characteristics

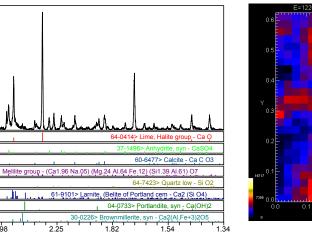
Physio-Chemical characteristics			
Parameter	Range	Average	
pН	8.2 - 10.8	9.5	
Eh (mv)	58 - 315	236	
Particle size, D50 (µm)	2.89 - 42.5	11.2	
Solids (%) - fresh	1.5 - 35	3.4 LDS)	
		24.1 (HDS)	
Chemical Composition			
Assay	Range	Average	
AI (%)	0.1 - 11.2	2.7	
Ca (%)	1.8 - 26.6	9.3	
Cd (%)	<0.0001 - 0.13	0.015	
Cu (%)	0.001 - 1.48	0.41	
Fe (%)	1.5 - 46.5	11.2	
Zn (%)	0.003 - 22.0	3.9	
S _{total} (%)	0.8 - 11.3	3.3	
NP	62 -900	275	
(kg CaCO3eqv./tonne)			

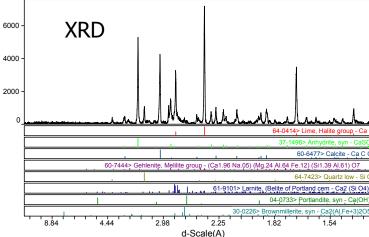

Canada

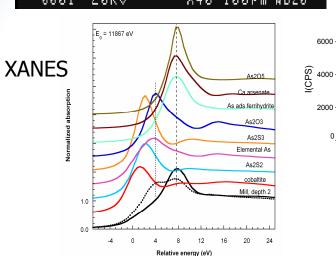

Natural Resources Ressources naturelles Canada






Sludge Mineralogy





XAS

Natural Resources Ressources naturelles Canada Canada

Sludge Stability

Natural Resources Ressources naturelles Canada Canada

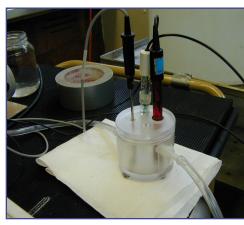
Regulatory Context

- Treatment sludges are waste products which may be subject to waste management regulations
- Leachate extraction tests used to evaluate if the waste should be classified as hazardous
- Leachate regulations vary by jurisdiction and site specific licenses

Evaluating Sludge Stability

- Presently no regulatory leach protocols designed for sludges or solid mine waste
- Current leach tests (TCLP) use acetic acid
 - organic acid does not mimic disposal scenario
 - false mobilization of some metals (e.g. Pb)
- Synthetic acid rain leachant is more appropriate (SPLP)
- Aggressive agitation
 - simulate long-term leaching

Sludge Stability – Batch Tests


- Leachate concentrations are generally 5x lower than regulated limits
- In general, sludge consistently pass the leaching tests with synthetic rain
- Sludge occasionally 'fail' acetic acid type tests
 - Zn, Cd, and Ni most mobile
- Sludges with more carbonate fare better
- Sludge with greater crystallinity more stable
- Aged sludges crystallize and stabilize

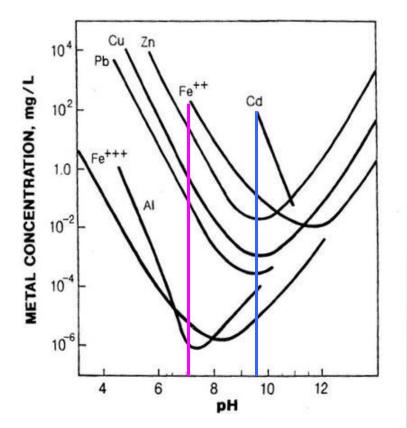
Column Leaching Tests

- Conceptually more realistic since they better simulate natural leaching processes
- Observations derived from column tests may be used to estimate the potential environmental impact of various sludge disposal scenarios
- Require a longer (years) leaching period to assess long term sludge stability

Leachate Regulatory Limits

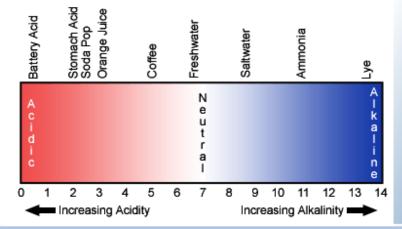
Parameter	Federal Regulatory Limit (mg/L)	
	(US)	(Canada)
Arsenic	5	2.5
Barium	100	100
Boron	-	500
Cadmium	1	0.5
Chromium	5	5
Lead	5	5
Mercury	0.2	0.1
Selenium	1	1
Silver	5	-
Uranium	-	10

Factors Affecting Sludge Stability

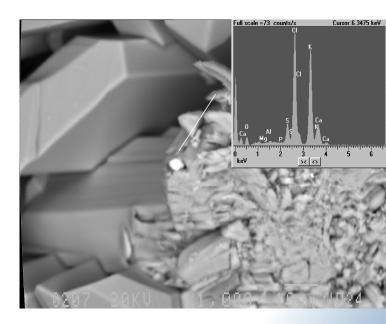

Natural Resources Ressources naturelles Canada Canada

Leachant pH

- Sludge leachability
 - strongly dependent on the leachant pH
- 1000 years of marginally acidic rainfall percolating through the sludge required to give a modest pH depression
- Sludge samples tested (batch) yielded final leachant pH ranging from 5.0 to 10.6
 - will become unstable with the addition of enough acid



Leachant pH


- Example
 - Site A: 14.2% Zn, NP=142, pH_f=6.8
 - Zn mobility = 27 mg/L
 - Site B: 14.4% Zn, NP=523, pH_f = 8.5
 - Zn mobility = 0.48 mg/L
 - ~ two orders of magnitude difference

Precipitate Crystallinity

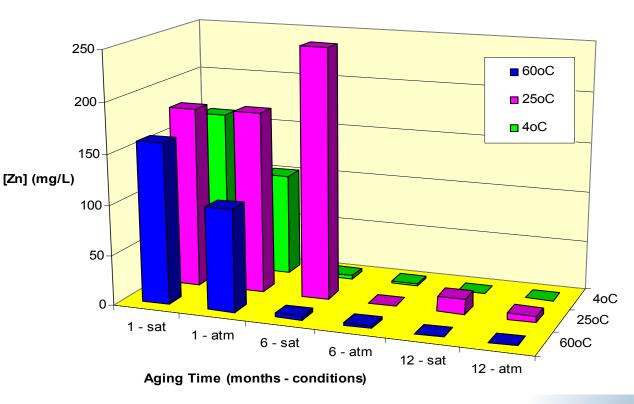
- Metal release from crystalline precipitates is generally lower than from amorphous or poorly crystallized material
- Sludge stability depends on the stability of the amorphous mass
- Sludge (Fe) recrystallization may increase mobility of adsorbed metals

Raw Water Composition

- Raw water has the greatest influence on the sludge characteristics
- Fe(II):Fe(III)
 - zinc leachability
 - solutions with Fe(II) and Fe(III) yield more crystalline, stable precipitates
- Higher sulphate levels
 - yield higher sludge densities
 - detrimental to settleability and particle growth
 - higher levels of metal leachability

Excess Alkalinity/ Treatment Process

- Excess alkalinity serves to reduce metal leachability
 - increase short-term sludge stability
 - buffer the pH in the alkaline or neutral region, limiting the degree of metal leaching
- Basic treatment system
 - poor lime efficiency
 - lower metal leaching (short term)
- High density sludge treatment
 - efficient lime utilization
 - low NP



Sludge Aging

- Sludges densify and further crystallize with time
- Aged sludges have a lower propensity metal leaching than fresh sludges

Disposal Environment

- Method of disposal ultimately affects the long term sludge stability
- Sludge could become unstable if in contact with moderate levels of acidity

Sludge Disposal, **Reuse and** Reprocessing **Technologies**

Canada

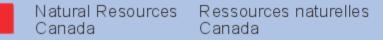
Natural Resources Ressources naturelles Canada

Sludge Disposal Considerations

- Dewatering ability
- Slurry density moisture content
- Volume rate of production
- Metal stability available alkalinity
- Sludge composition
- Economics

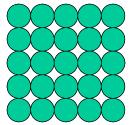
Pond Disposal

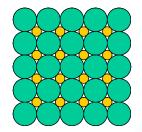
- Disposal above water table
 - Erosion (wind, water) and surface infiltration increase
- Disposal below water table
 - Sludge remains wet, cracking limited
 - Isolate sludge from surface erosion and hydraulic gradients


Pond Disposal Studies

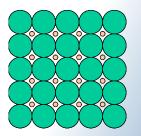
- Metal mobility was not a concern for the given leaching period (>3 years)
- Addition of a water cover over sludge significantly decreased metal mobility
 - sludge cracking avoided
 - better distribution of buffering capacity to the system
- Sludge in reducing environments did not appear to increase metal mobilization (As)

Co-disposal with Other Wastes


- Eliminates additional waste management facility
- Can be beneficial both in terms of sludge stability and the abatement of acid generation at least in the short term.
 - source of excess alkalinity
 - fill interparticular voids and reduce oxygen and water penetration
- Sludge could become unstable if in contact with higher levels of acidity



Sludge-Tailings Co-disposal


- Sludge mixed with tailings prior to disposal
 - ~<5% sludge in tailings
 - Fill void spaces in tailings
 - Only reduce the metal mobility in the short term
 - Longer term
 - dissolution/depletion of sludge will occur
 - higher degree of oxidation

Tailings

Tailings codisposed with sludge

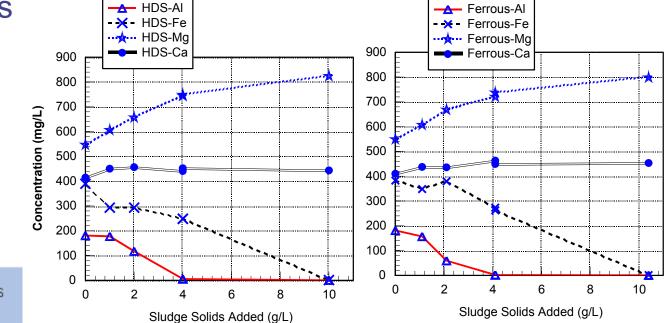
Partial sludge dissolution

Sludge-Tailings Co-disposal

- Sludge as cover over Tailings
 - Sludge permeability
 - low permeability maybe an effective barrier to water
 - wet/dry cycles cause cracking allowing water and oxygen to reach the tailings
 - Sludge layer disposal not effective to stop or to significantly slow down oxidation
 - short term solution only

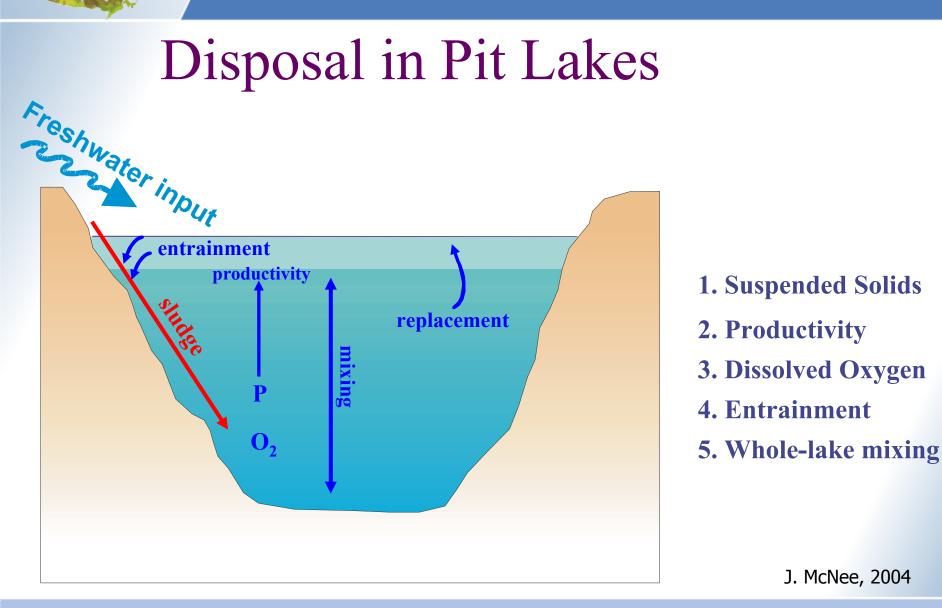
Sludge-Waste Rock Co-disposal

- Fill void spaces in waste rock, not effective as a seal or cap
 - NB Coal
- Short term amendment
- Low cost
- Does not prevent acid generation
- Potential for sludge
 dissolution
- No adverse environmental issues



Disposal in Mine Workings

- Sludge pumped/trucked to boreholes drilled into u/g inactive deep mines
- Sludge alkalinity provides some neutralization of acidic mine water
- Ferric hydroxide does not dissolve, accumulates in workings
 HDS-AI
 Ferrous-AI



Disposal in Mine Workings

- Considerations
 - Site availability and access
 - Mine capacity, void space, configuration
 - Sludge properties viscosity
- Advantages
 - Filling of mine voids may reduce subsidence
 - Sludge may assist neutralization of mine water
 - Low surface land consumption/reclamation

Ressources naturelles

Canada

Natural Resources

Canada

Sludge in Backfill

- Integration of sludges and slag as a backfill material
 - reduce the amount of waste to dispose at the mine surface
- Cementitious stabilization of slag, tailings and sludge
- Chemical and physical stability are key
- Less than 5% sludge in mix

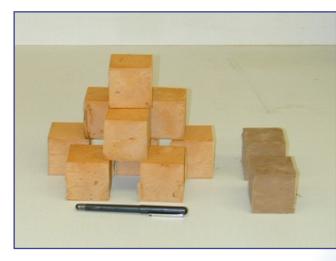
Reprocessing of Sludges

- Sludges can contain significant concentrations of metals
 - Zn, Cu, Ni
- Metal recovery to offset remediation costs
- No additional disposal costs, recycling, no additional liabilities
- Hydrometallurgical approaches
 - Solvent extraction
 - Fluidized bed ion exchange
 - Acid/alkaline leaching
- Smelting

Canada

- Requires sludge drying
- Impurities impacts ?

Natural Resources Ressources naturelles Canada

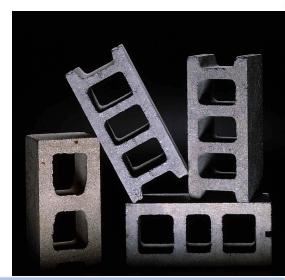


Stabilization with Additives

- Chemical and/or physical stabilization
- Physical entrapment, chemical fixation, binding
- Compatibility of binder with sludge is crucial
- Typically cost prohibitive but may be applicable to certain high risk sludges
 - \$50 to \$300 per tonne

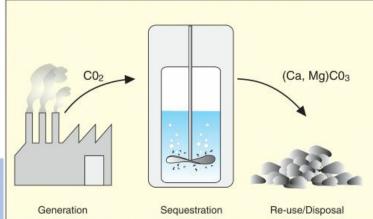
Landfill

- Solid or hazardous waste
- Solid-liquid separation issues
- Requires dewatering and drying before transport
- Stabilization may be required
- Public concern over sludge transport to off site landfill
- Estimated costs
 - \$50-90 US/t
 - \$120 US/t (with stabilization)
 - \$160 US/t (hazardous waste landfill)



Sludge Reuse Options

- Sludge as brick material
 - Sludge proportion and firing temperature key to compressive strength
 - Metal leaching low
- Agricultural land applications
 - To raise soil pH
 - Limited
- Replacement in cement manufacturing
 - Calcite/gypsum/free lime content
 - Drying required (<2% moisture)



Sludge Reuse Options

- Gravel from sludge
 - road construction
- Metal adsorbent in industrial wastewater treatment
 - able to remove a wide variety of contaminants, including Cu, Zn, Ni, Cr, Pb, As, carcinogenic dyes/colours and natural organic matter (NOM).
 - surface charge easily altered and sludge regenerated by adjusting the solution pH
- Pigment (ferrihydrite)
- Sink for CO₂

Reclamation of Sludge Disposal Areas

- Revegetation of mine sludge
- Provide ground cover to limit wind and water erosion
- Overcome nutrient deficiencies, fertilizer consumption
- Degree and impact of metal uptake
- Alkaline tolerate plant species
 - may make tailings and sludge ponds more amenable to the establishment of vegetation

Natural Resources Canada Ressources naturelles Canada

Summary of Key Points

- Sludge disposal is an ever increasing issue
- Sludge characterization is challenging amorphous material
 - requires a range of techniques
- Sludge stability is dependent on various factors which can be controlled by appropriate disposal
 - site specific
- Current disposal practices often do not address long term storage (long term stability issues)
 - range of options are available
- Opportunity for metal recovery and sludge reuse

Thank You

Natural Resources R Canada C

Ressources naturelles Canada

