Integrating ARD Prevention into the Mt. Milligan Project

December 2008
Project Information

- Project is 155 km northwest of Prince George, BC
- Proven and Probable Mineral Reserve - 334 Mt averaging 0.22% copper and 0.43 grams per tonne gold
- Large scale open pit mining from two pits
- 60,000 tonnes per day processing plant
- Peak mine production of 44 Mt/a @ 0.82 waste:ore strip ratio
- Conventional copper-gold concentrator with flotation
- Two tailing streams:
 - cleaner tailing (7,200 tpd)
 - scavenger tailing (52,800 tpd)
- Capital cost of $917 million
- 700 direct jobs during construction and 400 jobs during operations
Over 1000 drill holes!
• Mineralogical studies of fresh and weathered rock
• over 1800 Acid Base Accounting (ABA) assays
• over 5000 multi-element scans
• 59 shake flask extractions
• 56 Net Acid Generation tests
• 23 tailing solution assays from metallurgical studies
• 7 column tests
• 16 humidity cell tests.
Results from ABA
Block Model Results – NP and S

Southern Star

NP (t CaCO₃ / 1000 t)

66

MBX

0.00 <= 40.000
40.000 <= 60.000
60.000 <= 80.000
80.000 <= 100.000
100.000 <= 1000.000

0.001 <= 0.500
0.500 <= 1.000
1.000 <= 2.000
2.000 <= 3.000
3.000 <= 1000.000

S (%)
• Two types of tailing:
 – Scavenger tailing is low sulphur – NAG
 – Cleaner tailing is high sulphur (HCT generated ARD in 2.6 years) – PAG
• From the block model, about 37% of the waste rock (25% of the total waste including overburden) has a NPR less than one
• PAG and NAG waste rock blocks tend to cluster
• Acidic drainage has not been produced from laboratory testing of waste rock.
 – High sulphur/low carbonate (NPR = 0.5) HCT ran for 9.5 years generated neutral pH leachate with low metal concentrations.
 – NAG test results are consistent with ABA
 – Humidity cells and sequential NAG suggest NPR cutoff between one and two
 – Nevertheless chose a NPR segregation criteria of 2.0
• Oxide/weathered waste rock somewhat higher metal leaching compared to non-oxidized waste rock
Waste Management Principles

- Segregate and submerge PAG waste rock and cleaner tailing
- Segregate and submerge oxide/weathered waste rock
- Use NAG waste rock and overburden for construction
- Use scavenger tailing for TSF cover material
Annual Waste Material Production

<table>
<thead>
<tr>
<th>Year</th>
<th>Overburden (kt)</th>
<th>Weathered Rock (kt)</th>
<th>Oxide (kt)</th>
<th>VH NAG (kt)</th>
<th>High NAG (kt)</th>
<th>Low NAG (kt)</th>
<th>Low PAG (kt)</th>
<th>High PAG (kt)</th>
<th>Total (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>16,257</td>
<td>1,060</td>
<td>1,669</td>
<td>518</td>
<td>0</td>
<td>2</td>
<td>372</td>
<td>3</td>
<td>19,881</td>
</tr>
<tr>
<td>2011</td>
<td>9,026</td>
<td>2,828</td>
<td>5,191</td>
<td>4,401</td>
<td>0</td>
<td>92</td>
<td>23</td>
<td>0</td>
<td>21,561</td>
</tr>
<tr>
<td>2012</td>
<td>8,974</td>
<td>4,353</td>
<td>2,401</td>
<td>2,612</td>
<td>497</td>
<td>745</td>
<td>2,021</td>
<td>497</td>
<td>22,100</td>
</tr>
<tr>
<td>2013</td>
<td>9,979</td>
<td>2,028</td>
<td>127</td>
<td>4,802</td>
<td>43</td>
<td>488</td>
<td>3,339</td>
<td>1,292</td>
<td>22,098</td>
</tr>
<tr>
<td>2014</td>
<td>9,992</td>
<td>2,537</td>
<td>954</td>
<td>1,170</td>
<td>346</td>
<td>2,147</td>
<td>3,291</td>
<td>1,664</td>
<td>22,101</td>
</tr>
<tr>
<td>2015</td>
<td>5,931</td>
<td>4,495</td>
<td>636</td>
<td>2,064</td>
<td>841</td>
<td>4,317</td>
<td>2,919</td>
<td>896</td>
<td>22,099</td>
</tr>
<tr>
<td>2016</td>
<td>3,803</td>
<td>1,279</td>
<td>112</td>
<td>2,581</td>
<td>641</td>
<td>2,676</td>
<td>7,208</td>
<td>3,598</td>
<td>22,098</td>
</tr>
<tr>
<td>2017</td>
<td>5,710</td>
<td>1,851</td>
<td>490</td>
<td>2,868</td>
<td>797</td>
<td>3,336</td>
<td>5,907</td>
<td>1,139</td>
<td>22,098</td>
</tr>
<tr>
<td>2018</td>
<td>5,579</td>
<td>1,195</td>
<td>918</td>
<td>2,891</td>
<td>744</td>
<td>2,021</td>
<td>4,012</td>
<td>740</td>
<td>18,100</td>
</tr>
<tr>
<td>2019</td>
<td>3,927</td>
<td>2,186</td>
<td>1,285</td>
<td>2,781</td>
<td>528</td>
<td>2,797</td>
<td>3,992</td>
<td>604</td>
<td>18,100</td>
</tr>
<tr>
<td>2020</td>
<td>1,427</td>
<td>691</td>
<td>518</td>
<td>1,659</td>
<td>582</td>
<td>3,072</td>
<td>5,449</td>
<td>703</td>
<td>14,101</td>
</tr>
<tr>
<td>2021</td>
<td>2,869</td>
<td>563</td>
<td>376</td>
<td>782</td>
<td>336</td>
<td>2,654</td>
<td>4,867</td>
<td>605</td>
<td>13,052</td>
</tr>
<tr>
<td>2022</td>
<td>2,965</td>
<td>1,126</td>
<td>551</td>
<td>303</td>
<td>170</td>
<td>2,253</td>
<td>4,354</td>
<td>604</td>
<td>12,326</td>
</tr>
<tr>
<td>2023</td>
<td>783</td>
<td>579</td>
<td>14</td>
<td>154</td>
<td>819</td>
<td>4,048</td>
<td>5,388</td>
<td>636</td>
<td>12,421</td>
</tr>
<tr>
<td>2024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>135</td>
<td>805</td>
<td>3,748</td>
<td>2,879</td>
<td>93</td>
<td>7,660</td>
</tr>
<tr>
<td>2025</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>766</td>
<td>1,146</td>
<td>2,348</td>
<td>415</td>
<td>0</td>
<td>4,675</td>
</tr>
<tr>
<td>2026</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>178</td>
<td>283</td>
<td>6</td>
<td>0</td>
<td>535</td>
</tr>
<tr>
<td>Total</td>
<td>87,222</td>
<td>26,771</td>
<td>15,242</td>
<td>30,555</td>
<td>8,673</td>
<td>37,027</td>
<td>56,442</td>
<td>13,074</td>
<td>275,007</td>
</tr>
</tbody>
</table>
Pit Material

- PAG Waste Rock
- Overburden
 - Sand & Gravel
 - Till
- Oxide/Weathered Waste Rock
- NAG Waste Rock
- Esker Borrow

Transfers

- Pit Material Transfer
- PAG Waste Rock to Pit Disposal
- Overburden Sand & Gravel to Dam Core/Liners
- Oxide/Weathered Waste Rock to TSF Dam – Shell
- NAG Waste Rock to TSF Causeway
- Esker Borrow to Dam – Filters

Destination

- Pit Disposal
- TSF Disposal
- Dam Core/Liners
- West Separator Berm
- TSF Dam – Shell
- TSF Causeway
- Dam – Filters
Waste Distribution by Final Destination (kt)

<table>
<thead>
<tr>
<th>Location</th>
<th>Overburden</th>
<th>Weathered Rock</th>
<th>Oxide</th>
<th>VH NAG</th>
<th>High NAG</th>
<th>Low NAG</th>
<th>Low PAG</th>
<th>High PAG</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSF Core Zones</td>
<td>9,342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,342</td>
</tr>
<tr>
<td>TSF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downstream Fill</td>
<td>32,850</td>
<td>0</td>
<td>0</td>
<td>25,433</td>
<td>5,200</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>63,523</td>
</tr>
<tr>
<td>TSF Upstream Fill</td>
<td>14,040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,040</td>
</tr>
<tr>
<td>WSB – Core Zone</td>
<td>1,388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,388</td>
</tr>
<tr>
<td>West Separator Berm</td>
<td>4,201</td>
<td>105</td>
<td>0</td>
<td>3,552</td>
<td>973</td>
<td>231</td>
<td>0</td>
<td>0</td>
<td>10,398</td>
</tr>
<tr>
<td>WSB – Laydown</td>
<td>25,371</td>
<td>6</td>
<td>9</td>
<td>650</td>
<td>686</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25,386</td>
</tr>
<tr>
<td>P C Causeway</td>
<td>15</td>
<td>26,428</td>
<td>15,204</td>
<td>27</td>
<td>18</td>
<td>18</td>
<td>114</td>
<td>10</td>
<td>41,834</td>
</tr>
<tr>
<td>PAG Separator Dyke</td>
<td>15</td>
<td>232</td>
<td>29</td>
<td>59</td>
<td>472</td>
<td>34,107</td>
<td>55,907</td>
<td>13,064</td>
<td>103,885</td>
</tr>
<tr>
<td>MBX-66 Backfill</td>
<td>834</td>
<td>1,324</td>
<td>2,631</td>
<td>421</td>
<td>0</td>
<td>5,210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>87,222</td>
<td>26,771</td>
<td>15,242</td>
<td>30,555</td>
<td>8,673</td>
<td>37,027</td>
<td>56,442</td>
<td>13,074</td>
<td>275,006</td>
</tr>
</tbody>
</table>
Implementation Plan Elements

- maintain and develop the ARD block model
- test blast hole samples to verify the accuracy of the ARD block model and make adjustments as necessary
- implement the segregation plan using geological and engineering controls and a dispatch system
- maintain and check records to ensure that the management plan is followed as planned
Dispatch System

• Every piece of production equipment (e.g., shovels, haul trucks, track dozer) will have GPS
• Dispatcher located in a look-out above the open pit will operate the system.
• Engineering department will transmit bench plans to the shovel and track dozer operators.
• Operators will see on screens plans with ore/waste and ARD boundaries and the location of their equipment relative to the bench plans in real time.
• The shovel and/or track dozer will segregate waste units according to the bench plan.
• Dispatch system will transmit the nature of the material and the required dump location for each load to screens in the truck driver cabs.
Site Analytical Methods

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>No. Samples/Year</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide/Weathered</td>
<td>30</td>
<td>Visual with occasional samples tested for acid soluble copper</td>
</tr>
<tr>
<td>NAG/PAG waste rock</td>
<td>400</td>
<td>Leco S and CO2 (surrogate for NP) and ICP Ca (additional surrogate)</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>External lab ABA</td>
</tr>
</tbody>
</table>
“WASTE IS MORE IMPORTANT THAN ORE”