Tailings and Mineral Carbonation: The Potential for Atmospheric CO₂ Sequestration

> H. Andrew Rollo Lorax Environmental Services Ltd.

Heather. E. Jamieson Department of Geological Sciences and Geological Engineering Queen's University

> Claudine A. Lee Dillon Consulting Ltd.

Acknowledgements

BHP Billiton

- John Witteman, Jim Millard
- NSERC

Overview

- Carbon Dioxide Sequestration
- History of Investigations
- Ekati Diamond Mine (location, geology, processing)
- Mineralogy
- Water Chemistry
- Modeling Results
- Estimates of annual CO₂ sequestration
- Conclusions and Implications

CO₂ Sequestration

Geological Storage

- Injection directly into geological formations (oil fields, coal seams, exhausted natural gas reservoirs)
- Currently used by oil industry to help increase oil recovery
- Leakage due to fracturing decreases storage efficiency

Ocean Storage

- Injection directly into deep ocean (> 1000 m)
- Ocean eventually equilibrates with atmosphere and releases excess CO₂
- Poorly understood biological effects of ocean CO₂ storage

Organic Storage

- Uptake of atmospheric CO₂ by trees and plants
- Release of stored CO₂ when plant matter burns or decomposes

Mineral Storage (Mineral Carbonation)

- Reaction of CO₂ with Mg-silicate minerals to form carbonates
- Considered one of the only permanent options for storing atmospheric CO₂
- Energy intensive due to pretreatment requirements of mineral reactant

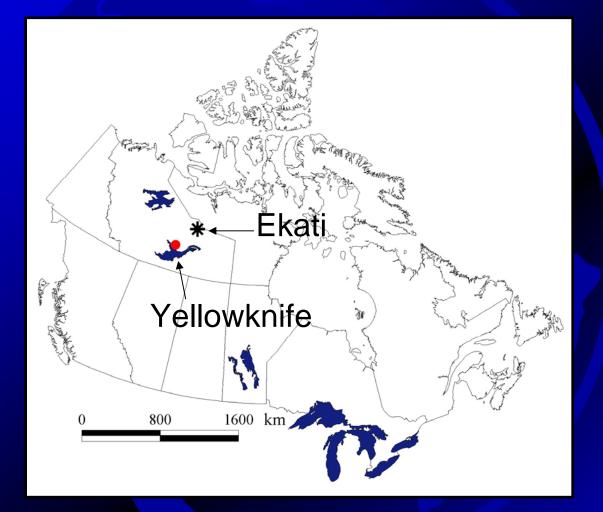
Mineral Carbonation

Olivine (forsterite) $Mg_2SiO_4 + 2CO_2 = 2MgCO_3 + SiO_2 + 95 kJ/mol$

Serpentine

 $Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2} = 3MgCO_{3} + 2SiO_{2} + 2H_{2}O + 64 kJ/mol$

History of Investigations


Rollo (2003)

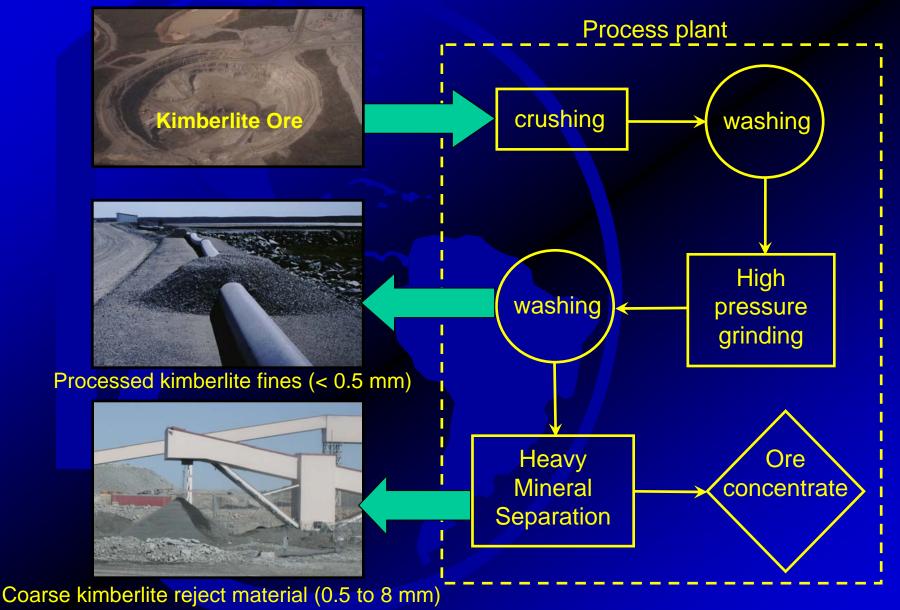
- Define the components of the mineral-water system within the processed kimberlite containment facility at Ekati Diamond Mine
- Determine the minerals and processes controlling observed water chemistry in the processed kimberlite containment facility

Lee (2005)

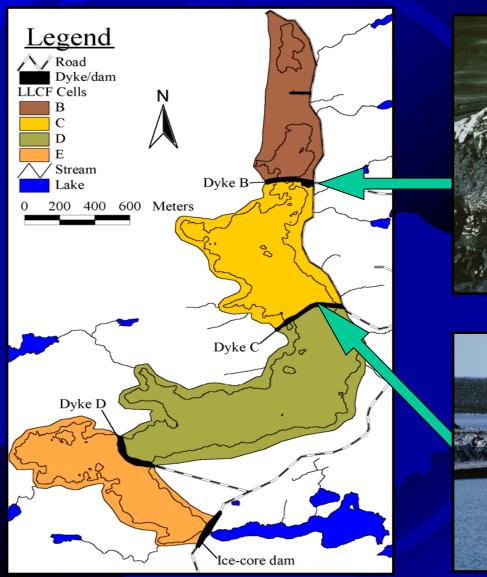
 Conducted laboratory experiments to replicate process plant discharge chemistry and identify if processed kimberlite material may sequester CO₂

Ekati Diamond Mine

Located approximately 300 km northeast of Yellowknife within the Lac De Gras Kimberlite field


Ekati Diamond Mine

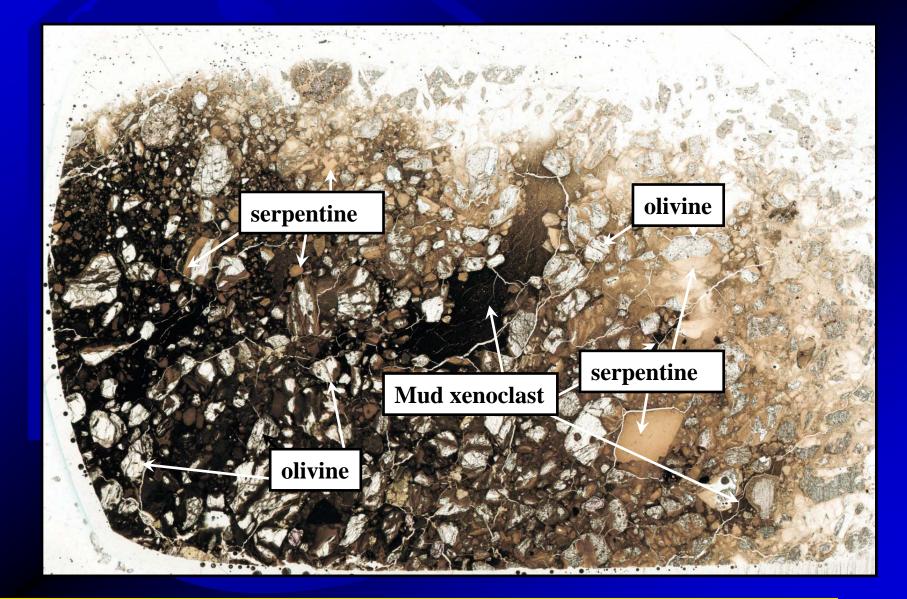
Approximately 11 kimberlite pipes over 17 year mine life


- Combination of open pit and underground mining
- 13,000 16,000 wet tonnes of kimberlite processed daily
- 30,000 40,000 m³ water used in the ore processing
 - 60% 70% is recycled within the processing plant

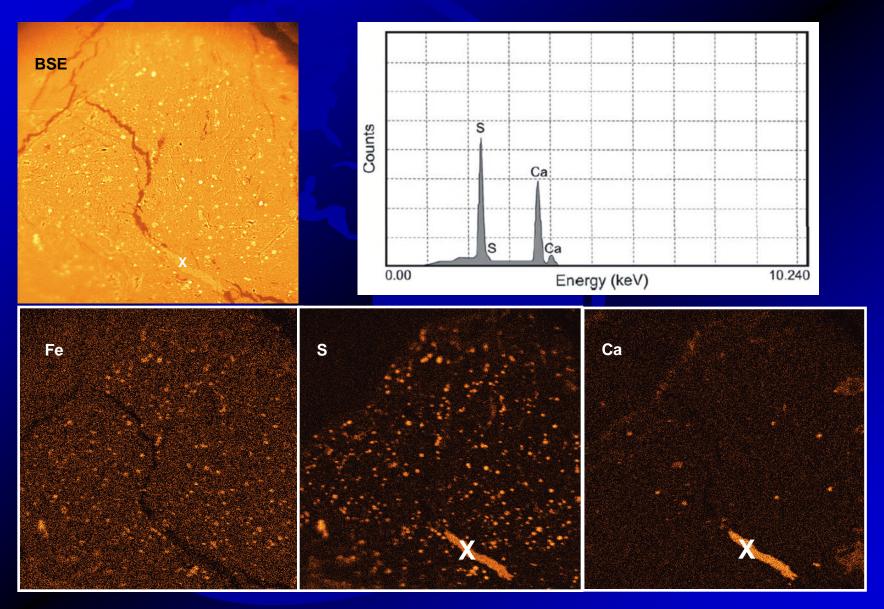
 Remainder (30% - 40%) is reclaimed from tailings storage facility

Ore processing

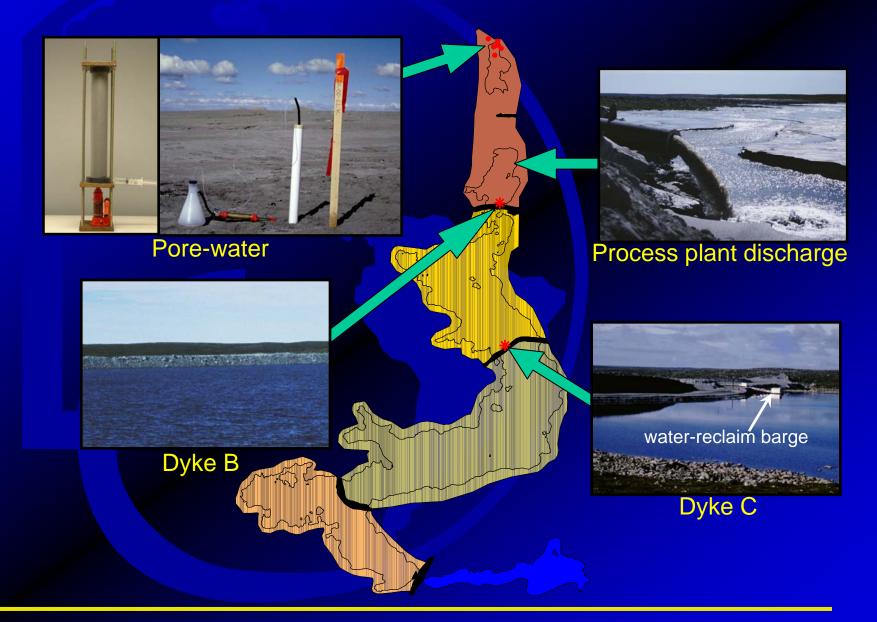
Processed Kimberlite Fines Storage Facility



Water-reclaim barge

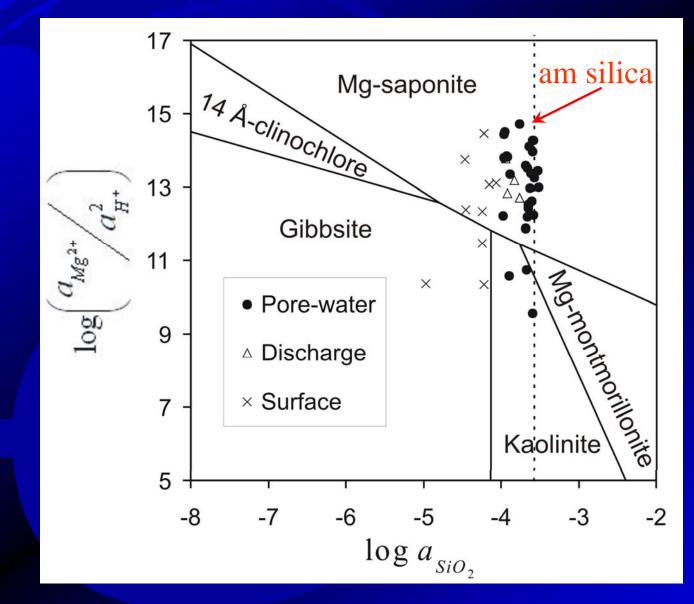

Kimberlite Mineralogy

- Kimberlite ore is composed predominantly of serpentine and olivine (> 50%)
- Mud xenoclasts common
- Other minerals include:
 - Phlogopite
 - Pyroxene
 - Garnet
 - Calcite
 - pyrite and Ca-sulphates (restricted to mud xenoclasts)
 - Clay minerals (saponite)
- Mineralogy of processed kimberlite fines is essentially identical to unprocessed kimberlite ore (minus Casulphate)
- Significant amounts of Fe-oxides absent from any samples collected


Kimberlite Ore

Mudstone: Sulphides and Sulphates

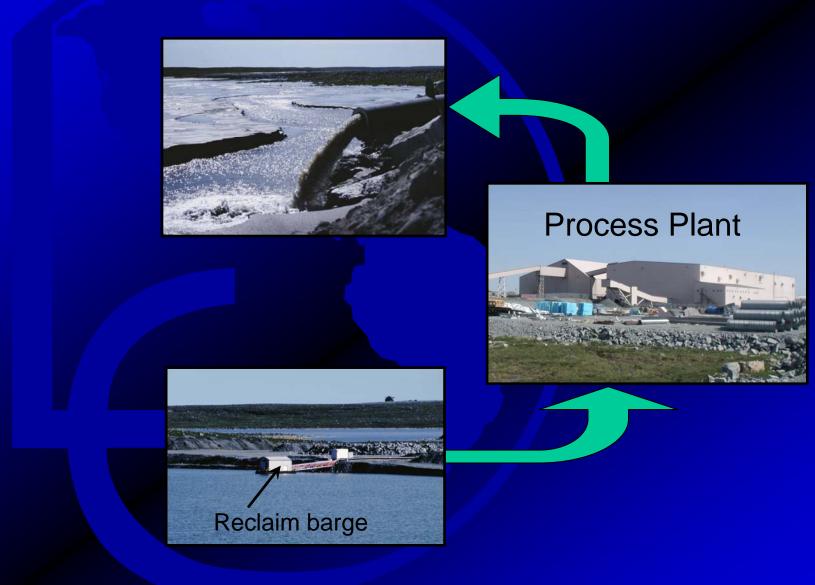
Water Samples


Water Chemistry

- Approximately 90 water samples collected
- Water chemistry dominated by:
 - SO₄ (90 1600 mg/L)
 - Alkalinity (40 60 mg CaCO₃/L)
 - Mg (30 330 mg/L)
 - Ca (20 190 mg/L)
 - K (20 60 mg/L)
 - Na (8 15 mg/L)
 - CI (5 30 mg/L)
 - Si (2 6 mg/L)
- pH 7 9
- Fe very low (< 0.5 mg/L)
- Trace metal concentrations are generally low

Saturation Indices

	Pore-water	Discharge	Dyke B	Reclaim
Chrysotile	-1.42	-0.57	-0.21	-5.99
Forsterite	-7.31	-6.50	-6.26	-10.12
Enstatite	-2.72	-2.46	-2.51	-4.45
Diopside	-3.93	-3.59	-3.53	-7.41
Gypsum	-0.78	-1.94	-2.14	-2.32
Saponite	~3. <mark>8</mark>	~3.5	~2.6	~-3.3
Calcite	-0.17	-0.05	-0.19	-1.02
Magnesite	-0.35	-0.10	-0.36	-1.25
CO _{2(g)}	-3.30	-3.59	-3.73	-3.23


MgO-SiO₂-Al₂O₃-H₂O System (12°C)

Inverse Modeling

- Mass-balance approach to determine a set a phase transfers responsible for the change in chemistry between two water samples along the same flow path
- Requires initial and final water composition plus knowledge of the mineralogy along the flow path
- Calculations conducted using PHREEQC

Water Flow Path

Inverse Model: Solution Chemistry

	Reclaim	Discharge
Sample Date	04-Jul-02	09-Jul-02
Temperature (°C)	16.35	20.25
рН	8.08	7.74
DO	9.99	7.84
Alkalinity (mg/L CaCO ₃)	43.6	59.6
Ca	17.8	54.1
Fe	0.005	0.018
K	33.7	81.2
Mg	30.5	90.2
Na	12.3	22.5
Si	2.00	4.9
CI	43	55
SO ₄	118	472

Inverse Model: Mineralogy

<u>Mineral</u> Magnesite Chrysotile $CO_2(g)$ **Forsterite** Gypsum Halite **Saponite-Ca** Saponite-K **Saponite-Mg** Saponite-Na **Am. Silica Fayalite Pyrite**

Formula MgCO₃ $Mg_3Si_2O_5(OH)_4$ CO_2 Mg_2SiO_4 CaSO₄-2H₂O NaCl $Ca_{0.165}Mg_3Al_{0.33}Si_{3.67}O_{10}(OH)_2$ $K_{0.33}Mg_3Al_{0.33}Si_{3.67}O_{10}(OH)_2$ $Mg_{3,165}AI_{0,33}Si_{3,67}O_{10}(OH)_{2}$ Na_{0.33}Mg₃Al_{0.33}Si_{3.67}O₁₀(OH)₂ SiO₂ Fe₂SiO₄ FeS₂

Inverse Model: Scenarios

Four scenarios were modeled:

Scenario 1: Gypsum was included as main source of dissolved SO₄ and the increase in Fe was considered negligible (Fe omitted)

Scenario 2: Similar to 1, except fayalite was included as source of dissolved Fe

Scenario 3: Similar to scenario 1, except pyrite was included as source of dissolved Fe

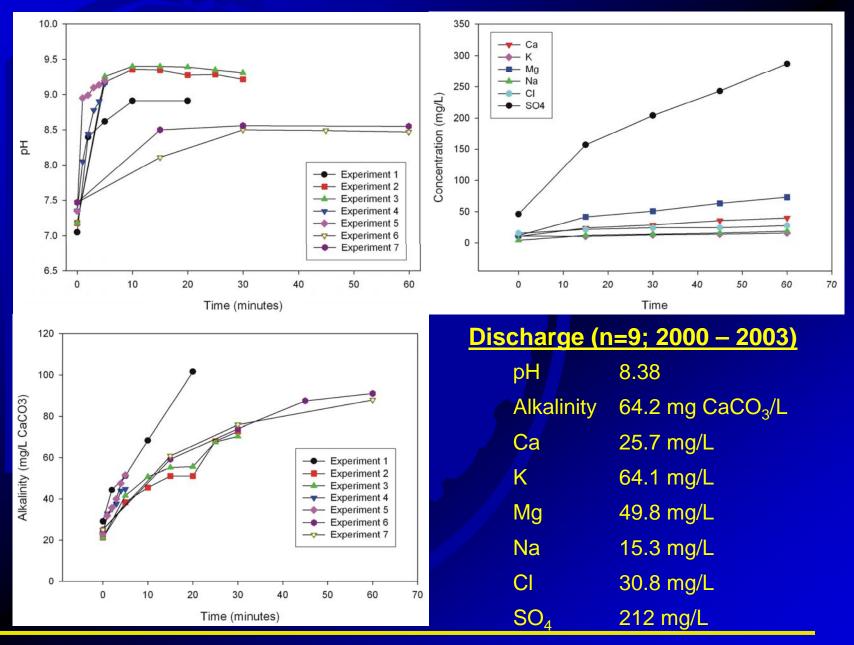
Scenario 4: Assumed that pyrite was sole source of dissolved SO₄ (gypsum omitted)

All models generated using scenario 4 required precipitation of large amounts of Chrysotile!

Inverse Model: Results (mol/kg solution)

<u>Mineral</u>	Scenario 1	Scenario 2	<u>Scenario 3</u>
Chrysotile	5.959	5.954	5.875
CO ₂ (g)	17.88	17.86	17.63
Forsterite			
Gypsum	0.003954	0.00 <mark>4</mark> 151	0.004147
Halite	0.0006	0.0006	0.0006
Magnesite	-17.88	-17. <mark>8</mark> 6	-17.63
Am. Silica	-11 <mark>.92</mark>	-11.91	-11.75
Saponite-Ca	-0.01789	-0.01908	-0.01907
Saponite-Mg	0.01500	0.01495	0.01493
Saponite-K	0.003012	0.004247	0.004239
Saponite-Na	-0.00012 <mark>34</mark> —	-0.0001106	-0.0001048
Fayalite	NI	0.0000001261	NI
Pyrite	NI	NI	0.000000252

Inverse Model: Results


<u>Mineral</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>Ratio</u>
Chrysotile	5.959	· ∽ - 5.954	5.875	1
CO ₂ (g)	17.88	17.86	17.63	3
Magnesite	-17.88	-17.86	-17.63	3
Am. Silica	-11.92	-11.91	-11.75	2

$1Mg_3Si_2O_5(OH)_4 + 3CO_2 = 3MgCO_3 + 2SiO_2 + 2H_2O_3$

CO₂ Sequestration Experiments (Lee 2005)

- Conducted to replicate process plant discharge water chemistry in laboratory
- Seven experiments run for varying times with varying charges of kimberlite material
- Initial solution chemistry similar to process plant reclaim
- Solute concentrations increased linearly towards process plant discharge water chemistry
- Inverse modeling results suggest dissolution of Mg-silicates and CO₂ and precipitation of amorphous SiO₂ and carbonate

Lee (2005) Experimental Results

15th Annual BC MEND Workshop, December 3-4, 2008, Vancouver

Mineral Carbonation: Evidence

 Inorganic carbon content increases from ore to fines

– ore = 1.40 %; processed kimberlite = 2.38 %

 Saturation indices of magnesite and amorphous SiO₂ near saturation

CO₂ Sequestration Potential

Daily water use in process plant = 30,000 m³ to 40,000 m³
- 9,000 m³ to 16,000 m³ (30% to 40%) reclaimed from containment facility

- 9 Mkg and 16 Mkg solution discharged daily ($\rho = 1000 \text{ kg/m}^3$)
- CO_2 mole transfer = 17.88 mol/kg = 0.787 kg CO_2 /kg solution
- 7,000 tonnes to 12,000 tonnes CO₂ sequestered daily

2.6 to 4.6 Mt CO₂ may be sequestered passively per year

Conclusions and Implications

- Results suggest that CO₂ sequestration (mineral carbonation) is occurring passively during ore processing at Ekati
- Processing of kimberlite ore (grinding) provides an energy efficient way of pretreating Mg-silicate material for mineral carbonation (no additional energy is required)
- Ore processing at mines with ultramafic host rocks has potential to partially offset CO₂ emissions
- Existing tailings at ultramafic deposits may be viable source materials for CO₂ sequestration by mineral carbonation (waste becomes product)