

Dewatered Tailings Management ARD Aspects

Todd Martin, P.Eng., P.Geo. AMEC Vancouver

- This presentation will more introduce the tailings continuum and nature of dewatered tailings
- Expectation is all present know ARD process
- Most ARD literature regarding tailings deals with conventional slurried impoundments
- Literature available that discusses ARD and dewatered tailings is generally misleading (e.g. that dewatered tailings have lesser or no ARD concerns)
- All related to a thorough site-specific understanding and overall water balance/geochemistry

Tailings Management Basics

- Conventional Tailings Impoundments?
 - High water consumption not sustainable in many regions of the world
- Dewatering Technologies
 - Dewatered tailings can range from high slump \rightarrow low slump \rightarrow "solid"
 - At maximum dewatering, can form stable, compacted stack with no need for dam construction
 - Useful in recovery of process water constituents
 - Useful for projects with cold climates, arid conditions, high seismicity, sensitive water balance, etc.
 - Applicability at large scale mining slowly developing
- Oxidation Process and ARD Compatible with Dewatered Tailings?
 - Yes and No
 - Site specific
 - Need to fully understand climate, hydrogeochemistry, tailings properties, cover design, etc.

Tailings Continuum

- More than just a dilute slurry available to present day tailings operations
- Some nomenclature confusion (e.g. saying paste = thickened that cannot be pumped without positive displacement)
- Dewatered tailings are increasingly common

Case for Dewatered Tailings Related to Water Content

Water Content (decreasing water losses)

Traditional Slurry

Thickened/Paste

Filtered

Thickened and Paste Tailings

- Dewatered but still a slurry
- Thickened
 - First thickened piles were far from panaceas
 - Taking what happens inefficiently in tailings impoundment and doing it in the process circuit
- Paste
 - A nomenclature challenge pumping boundary is artificial
 - Underground paste backfill where much of the research/experience occurred
- Thickened and paste to obtain benefits, must remain non-segregating

Thickened Tailings Examples - Australia

Mt. Keith

Thickened Tailings – Subaerial Beaching

line 28 pm

Note –tower "valves" for rising mass

Thickened Tailings have Runoff/Seepage

Central Thickened Discharge at the Peak Gold Mine, Australia

Kidd Metallurgical Site - Ontario

Kidd Metallurgical Site - Ontario

Thickened Tailings at its best

Sunrise Dam gold mine in W.A.

Thickened Tailings on a large scale

Sar Cheshmeh Mine, Iran

Paste Tailings

- There is a "grey" area between thickened/paste tailings nomenclature
- Paste tailings are often defined as tailings that have been significantly dewatered to a point where they:
 - require positive displacement versus centrifugal pumping
 - do not have a critical flow velocity when pumped
 - do not segregate as they deposit
 - produce minimal (if any) bleed water when discharged

Underground Paste Backfill

Surface Paste

- Myra Falls, Vancouver Island, British Columbia
- Relatively low tonnage, very wet environment

Surface Paste – Myra Falls

Surface oxidation between lifts

Surface Paste

- Bulyanhulu, Tanzania
- Relatively low tonnage, arid environment

amec[©]

Surface Paste

- Bulyanhulu, Tanzania
- Surface geochemical processes between beach lifts

Dry Stacking - Filtered Tailings

- Filtering concentrate is a commonplace activity at mines
- Paste plants often include tailings filtration
- In past 10 to 15 years, advances in filter technology has seen
 - wider range of stacked tailings (most often metal mines, particularly mid-sized gold properties)
 - increased tonnage potential
 - decreased CAPEX/OPEX on per tonne basis

Dry Stacking Economics

Not inexpensive, but...

- Regulatory expedience
- Low closure costs
- Compatibility with paste backfill
- Less costly than surface paste

Capital Costs

- Filtration Units
- Transport Equipment (Trucks/Conveyors)
- Placement Equipment (Spread/Compact)

Operating Costs

- Range in costs from \$1 to \$10 per tonne (USD)
- Average appears to be \$1.50 to \$3.00 per tonne (USD)

Greens Creek Mine, Alaska

Worldwide Extent – Dry Stacks

- Approximately 55 metal/industrial mineral operations
 - Current range from <100 tpd to about 24,000 tpd
 - Gold, uranium, coal, phosphogypsum, copper, lead/zinc, silver etc.
- Proposed on dozens more wide variety of mine types
- Fairly broad geographical usage
 - Canada, United States, Chile, Mexico, South Africa, Tanzania, Zambia, Zaire, Australia
- Approximately 12 sand and gravel operations

Dry Stack Physical Attributes

- Viewed by knowledgeable regulators (and correctly so) as both less invasive and less difficult to decommission
 - Not a "dam" impounding fluids
 - Does not conjure up "massive" failure scenarios
 - Lesser footprint
 - Limited, if any, seepage
 - Reclamation advantages
 - Much less water lost
 - Reclaim wash water solution
 - "Optics"
 - ARD dealt with by means other than "flooding"

Pogo Mine, Alaska

Shell

FTD

Greens Creek Mine, Alaska

Climatic Extremes Raglan, northern Quebec, and La Coipa, Chile

ame

Raglan – pressure filtered to w_{opt} La Coipa – vacuum filtered to 2% over w_{opt}

World's Largest Tailings Stack La Coipa Mine, Chile

Nominally 20,000 tpd since 1990

Another "Dewatered" Technology - Co-Disposal

Elkview Coal Mine, British Columbia

Dewatered tailings and coarse coal refuse deposited together

Co-Disposal

Result looks more like a conventional waste dump than a tailings impoundment

Fine (tailings) refuse mixed with coarse (CCR) refuse to create co-disposed "mixed" coal refuse

Dewatered Tailings and ARD

- Dewatered tailings can certainly provide a more "responsible" option for many operations in terms of water management
- Dewatered tailings <u>can</u> have oxidation potential enhanced
- This oxidation is balanced against much lower seepage rates (particularly for filtered tailings)
- Thickened tailings
 - Mechanical consolidation intervention prior to the impoundment
 - Still involves a pond to manage
- Paste tailings
 - A common U/G backfill alternative
 - Surface = "thicker" thickened tailings
 - Still has surface oxidation issues
- Filtered tailings
 - No pond
 - Greatest amount of dewatering intervention
 - Needs to have sound geochemical modeling
 - Can traffic and reclaim immediately upon placement

Thank you.

