The East-Sullivan Mine Site: Merging Prevention and Treatment of Acid Mine Drainage

Diane Germain
Normand Tassé
Johanne Cyr
The East-Sullivan Mine Site

Val d’Or
North-Western Québec
Impoundment Characteristics

Cu, Zn (Au, Ag) Mining from 1949 to 1966

total area: 136 ha
(+ 68 ha spilled tailings)

total mass of tailings: 15 Mt

S_{sulphide} : 3.5% (mainly pyrite)

total acid potential:
400 350 t. CaCO$_3$

total neutralizing potential:
50 280 t. CaCO$_3$
Abandonment: 1966 to 1984

Pond

Bourlamaque River
Water and Wind Erosions
Requirements for Mine Final Effluent

Acceptable pH: 6.0 - 9.5

Acceptable concentrations (mg/l):

<table>
<thead>
<tr>
<th></th>
<th>monthly average</th>
<th>maximum in a single sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe:</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Cu:</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Zn:</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Pb, As, Ni, etc.:</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

(Québec MDDEP)

To achieve these criteria, the mining industry needs tools to stop metal-rich acid drainage or to treat unacceptable effluents.
Acid Mine Drainage: Reactions

\[
FeS_2 + \frac{7}{2}O_2 + H_2O = Fe^{2+} + 2SO_4^{2-} + 2H^+
\]

(\textit{Acidiniobacillus ferrooxidans}: X 10^3 to 10^6)

\[
Fe^{2+} + \frac{1}{4}O_2 + H^+ = Fe^{3+} + \frac{1}{2}H_2O
\]

\[
Fe^{3+} + 3H_2O = Fe(OH)_3 + 3H^+
\]

\[
FeS_2 + 14Fe^{3+} + 8H_2O = 15Fe^{2+} + 2SO_4^{2-} + 16 H^+
\]

To stop AMD production:
limit oxygen and/or water access to sulphides
Objectives

To demonstrate that:

1. **Organic cover** does limit ...

 i- atmospheric oxygen migration

 ii- Acid Mine Drainage production

2. **Recirculation** through the organic cover allows AMD treatment via sulphate reduction processes
New Approach to Restoration: Organic Cover

Tailings

Wood Waste

2 m
1) Oxidation of organic matter: mirror image of O_2 and CO_2
2) Methanogenesis: confirmation of anoxic milieu

O_2 consumed: PYRITE OXIDATION IS HALTED
Groundwater Quality: Core of Plume

Fe$^{2+}$ (mg/l)

depth: 6 m
Treatment of AMD by Sulphate Reduction

- The problem:
 - Low water quality
 - Acid: \(H^+ \)
 - Mine: \(Me^{2+} \) and \(Me^{3+} \)
 - Drainage

- A solution:
 - Reduction of sulphates
 - Production of alkalinity
 - Sulphides rather than hydroxides precipitation

- Driving principle:
 - Redox reaction (Desulfovibrio sp.)
 - \(SO_4^{2-} + 2CH_2O = H_2S + 2HCO_3^- \)
 - Sulphate reduction: precipitation of metal sulphides
 - \(Me^{2+} + H_2S = MeS + 2H^+ \)
Alkalinity Distribution (1994)

Clay and Bedrock

Mine Tailings

alkalinity, mg-CaCO$_3$/l
watertable
control (piezometers and boreholes)
From Prevention To Treatment

1- AMD Collection

1998
From Prevention To Treatment

2- Recirculation System
Feed vs Pore Waters: pH

Feed Water vs Pore Water

pH

Feed vs Pore Waters: Fe

Feed Water (Fe_{Σ})
Pore Water (Fe^{2+})
Watertable
(2003)

- Mine Tailings
- Wood Waste
- Control

100 m
Surface Water: Mass of Fe

- Mass of Fe (X 1000 kg)
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120

- Reservoirs:
 - North Res.
 - South Res.
 - East Res.
 - West Res.

- Regions:
 - North R.
 - South Res.
 - East Res.
 - West R.

Graph showing the mass of Fe (in X 1000 kg) for different years and reservoirs.

- West Res.: Steep decrease from 1998 to 2002, then plateau.
- South Res.: Steep increase from 1998 to 2002, then decrease.
- North Res.: No significant change throughout the years.
Surface Water: Balance of Alkalinity

Alkalinity minus Acidity
X 1000 kg-CaCO$_3$

(all reservoirs)
Surface Water : pH

Note: Criteria are shown on the results slides of the East reservoir only as REFERENCE; the final effluent of the East Sullivan site is located south of the pumping station.
Surface Water : Fe

(criteria: maximum, average)

(East Reservoir)
Surface Water: BOD & Phenols

(East Reservoir)

BOD (mg/l)

Phenols (mg/l)

Concentration levels:
- BOD: 0.001, 0.01, 0.1, 1, 10, 100, 1000 mg/l
- Phenols: 0.0001, 0.001, 0.01, 0.1, 1, 10 mg/l
How is Nature Responding?
Conclusions

Organic Cover

- stops efficiently atmospheric oxygen migration
- allows higher infiltration of water that rises the watertable, implementing a 'wet cover' condition, which acts as a back up
Conclusions

Recirculation of AMD

- allows a more rapid flushing of pore water within the impoundment
- improves the quality of the effluents via sulphate reduction reactions; in fact, since 1999 the water quality of the final effluent meets the requirements of the Ministry du Développement durable, de l’Environnement et des Parcs du Québec.
Acknowledgements

Site rehabilitation, water recirculation system, and follow up financed by:

Laboratory study supported by:

NEDEM
Thank you for your attention!