

Results of a Pilot Fluidized Bed Reactor Selenium Treatment Demonstration

17th Annual British Columbia/ Canadian Mine Environment Neutral Drainage Program (MEND) Mining Leaching/Acid Rock Drainage Workshop

December 2, 2010 Vancouver, British Columbia

By Tom Sandy/CH2M HILL

Agenda

- Background
- Technology Overview
- Pilot Test Objectives
- Pilot Unit Design Configuration
- Key Design Criteria
- Water Quality
- Results
- Conclusions

Background

- Eastern US Appalachian mountain surface coal mine
- Compliance at 3 Outfalls of 4.7 µg/L average month 8.2 µg/L daily max
- One of many end of pipe treatment technologies evaluated
 - ABMet®
 - Zero Valent Iron
 - Reverse Osmosis
 - VSEP[®]
- Considered in conjunction with other in mine management alternatives
- Watershed hydrology and ecotoxicology studies

Fluidized Bed Reactor (FBR) Technology Overview

- Attached growth biological treatment
- Heterotrophic anaerobic biogrowth
- Configuration provides efficient mass transfer
- Continuous liquid solid separation

• Relatively Simple Copyright 2010 by CH2M HILL, Inc. • Company Confidential

- Uses sand, activated carbon or other solid media with similar characteristics
- Small footprint
- Lower capital cost

One of Many Attached Growth Reactors...But One of the More Efficient

Pilot Testing Overview

- Easily accessible outfall with similar water characteristics
- Proof of concept-16 weeks mid-February 2010 to end of May 2010
- Design testing-24 weeks mid-September 2010 to mid February 2011
- Parallel flow and water quality basis of design development during design testing both on-going.

General Influent Water Quality

Parameter	<u>Unit</u>		_
_	_	Average	Std Dev.
TSS	mg/L	7	5
TDS	mg/L	2902	311
Total Solids	mg/L	2909	315
COD	mg/L	8.8	5
ТОС	mg/L	2.6	1
Sodium	mg/L	14.7	0
Chloride	mg/L	9.5	0
Ammonia	mg/L	0.22	0
Sulfate	mg/L	1902	47
Strontium	mg/L	1.41	0
Total Phosphate	mg/L	0.96	0
Manganese	mg/L	0.03	0
Alkalinity	mg/L	278	8
Carbonate	mg/L	0	0
Bicarbonate	mg/L	290	14
Turbidity	ntu	11.28	12
Nitrate	mg/L	9.52	0
Calcium	mg/L	302	8
Magnesium	mg/L	377	10
Potassium	mg/L	29.9	2
Silica	mg/L	1.56	1
Hardness	mg/L	2169	35
Cyanide	mg/L	0.014	0
Orthophosphate	mg/L	<0.01	0
CBOD	mg/L	<1.0	0
Barium	mg/L	<0.10	0
Boron	mg/L	0.12	0
Fluoride	mg/L	0.17	0
TKN	mg/L	<0.10	0

Proof of Concept Pilot Testing Setup & Configuration

Design Pilot Testing Configuration

Envirogen Pilot FBR

Pilot Exterior

CH2MHILL

Pilot FBR

Pilot FBR Configuration

- 61 cm (2 ft) diameter by 4.3 m (14 ft) high stainless steel reactor
- 38 lpm (10 gpm) and 151 lpm (40 gpm) maximum recycle flowrate
- Support equipment in 2.4 m (8 ft) by 3 m (10 ft) Conex Box
- 163 Kg (360 lbs) of granular activated carbon (GAC) or 60% of active reactor volume
- Fluidized bed height 2 to 3 m (8 to 9.5 ft)

Pilot FBR Operation-Proof of Concept

- MicroCg carbon substrate feed
- Phosphoric acid, ammonium sulfate and micronutrients added
- 30 lpm (8 gpm) forward feed
- 132-151 lpm (35-40 gpm) recycle flowrate
- >3:1 recycle rate required for proper bed fluidization
- Hydraulic residence time (HRT) at 30 lpm (8 gpm) is approximately 28 minute in

Pilot FBR Monitoring

- Monitored a variety of parameters in influent and effluent
 - pH, temperature, ORP, TSS, VSS, TDS, DO, COD, BOD, nitrate, sulfate, sulfide, phosphate, calcium, magnesium, selenium forms, micro exams,
- Conducted Toxicity Characteristic Leach Procedure (TCLP) testing on solids in proof of concept

Microscopic Examination

Chemical Oxygen Demand (COD)and Total Suspended Solids (TSS)

Temperature

Effluent COD and Biochemical Oxygen Demand (BOD₅)

COD Stoichiometry and Selenium Removal Performance

Selenium Removal Performance

Observed Yields

Proof of Concept Conclusions

- Soluble selenium removal consistently below 4.6 µg/L
- Effluent TSS will require polishing to meet NPDES selenium requirements
- Effluent BOD will require aerobic treatment to meet expected NPDES requirements
- Residuals nonhazardous per EPA RCRA TCLP 1 mg/L Se

Design Testing Focus On-Going

- TSS removal evaluation: filtration and sedimentation
- BOD removal evaluation-aerobic attached growth bioreactor
- Maximum throughput design capacity
- Reliability and operability reviews
- Flow equalization/diversion requirements

Questions?

Tom Sandy, P.E. Technology Director CH2M HILL 11301 Carmel Commons Blvd, STE 304 Charlotte, NC 28226 tsandy@ch2m.com

