Water Quality Predictions in 1992 – How do they Compare to Current On-site Conditions at the Closed Bell Mine Site in BC?

by Ron Nicholson and Erin Clyde, EcoMetrix Incorporated Jacques Moulins, John Stroiazzo and Charles See, Xstrata Copper

18th Annual British Columbia-MEND ML/ARD Workshop 30 Mov – 01 Dec 2011 Vancouver, BC

Porphyry Copper Mine Background

- Porphyry Copper Deposit
 - Intrusive volcanogenic with hydrothermal alteration
 - Pyritic halo
- Staked first claims in 1962
- Mining started in 1970
- Milling started in 1972 with up to 15,500 tonnes per day
- Mine operated until March 1992

Porphyry Copper Mine Background

Site History

- Operations
 - Open pit measures 2100 meters in diameter and is approximately 320 meters in depth
 - Total pit Volume of 61 Million cubic-metres
 - About 152 million tonnes (Mt) of material removed from pit (~ 79 Mt of ore , ~ 73 Mt of mine rock)
 - Tailings Management Area (TMA) just to the south of the pit (contains ~ 77 Mt of tailings)

Location

Mine Site – Key Features

Porphyry Copper Mine Background

- Mine Closure
 - Earlier ARD work by regulator in 1980s focused on tailings
 - Systematic ML/ARD assessment in 1991-93 for closure
 - Key focus points included mine rock and tailings geochemistry, prediction of long term water quality, water management, pit filling and site reclamation
 - Mine closed in 1992

Exploration Sample Pulps

Porphyry Copper Mine Background

- Current Conditions
 - ~ 30% of the site has been reclaimed (wildlife habitat)
 - ~ 62 Mt of potentially acid generating (PAG) rock and
 77 Mt of tailings stored on site
 - Water management includes collection ponds and pump houses that collect and transfer water to the pit for storage with plans for treatment when discharge required
 - 3 permitted discharges of diverted clean water

Tailings

ML/ARD Assessment – 1991

- Rock types identified and inventories established
- Mineralogy and metal content analysis
- Acid base accounting (ABA) that included;
 - Sulphur species (S_T , S^{2-} , SO_4)
 - Sobek NP
 - Carbonate content
- Kinetic tests (Humidity cells)
- Interpretation of Heap Leach column test results
- Interpretation of on-site water quality
- Water quality modelling

Rock Types and Inventories

- 6 Major rock types
- 4 stockpiles

Summary of ABA Results

Data Set -Number of Samples	Year	NI	NP (t/100	Dt)	Paste pH			NP/AP			
		Low	Mean	Мах	Low	Mean	Мах	Low	Mean	Мах	
38	99	-87	-32	+13	2.4	7.5	9.2	-0.39	0.59	1.31	
16	91	-86	-35	-5	7.9	8.1	8.2	0.26	0.59	0.90	
5 (Tailings)	91	-120	-96	-14	3.3	4.2	5.3	-0.11	-0.06	0.01	
10	91	-111	-43	-6	7.8	7.9	8.0	0.28	0.55	0.90	
1 Composite	90		-28			8.1			0.68		
17	87	-388	-44	+18	2.6	6.8	8.0	-0.21	0.79	2.63	
7	87	-141	-8	+42	1.8	5.6	7.2	-0.40	1.74	3.47	
16	91	-86	-35	-5	7.9	8.1	8.2	0.26	0.59	0.90	
5 (Tailings)	91	-120	-96	-14	3.3	4.2	5.3	-0.11	-0.06	0.01	
10	91	-111	-43	-6	7.8	7.9	8.0	0.28	0.55	0.90	

Paste pH vs NP/AP Ratio (NPR)

Kinetic Test Program

- Heap leach test program established during operation to assess feasibility
- Three (3) additional humidity cells established specifically to assess:
 - Rates of acid generation, acid neutralization and metal leaching at neutral pH
 - Rates of acid generation and metal leaching at acidic pH values

Heap Leach Tests

- 4 4 inch diameter columns (25 kg)
- 12 24 inch diameter columns (2500 kg)
- 8 30 tonne cribs

Humidity Cell Tests

Humidity Cell	Material	Conditions
1	A-Frame	Acidic
2	North Dump	Neutral
3	Dam #1	Neutral
TS-7, T1, T2,	Tailings	Neutral
ОТВ	Tailings	Acidic

Sulphide Depletion Rates

 Sulphide depletion rates derived from SO₄²⁻ loading rates in Humidity Cells

NP Depletion Rates

- Theoretical NP depletion rate from SO₄²⁻ production rate
- Estimated

 Carbonate NP
 depletion rate from
 Carbonate Molar
 Ratio
 ([Ca+Mg]/SO₄) *
 Theoretical
 depletion rate

From MDAG, 1992

Sulphide and NP Depletion Times – Mine Rock

- Calculated times for onset of acid conditions ranged from 0 to 40 years
- Sulphide depletion times ranged from 10 to 125 years

Sulphide and NP Depletion Rates

Predicted "times" strongly depend on which model is selected

Acid Generation Predictions

- Mine rock predicted to start generating acid between 2010 and 2030 – depending on available NP – assumed Linear model
- Water in tailings may become acidic in future but water moving down in tailings was expected to be neutral as a result of NP in tailings below the oxidation zone
- Water from tailings can be managed on site with storage in open pit

Empirical Drainage Chemistry Model (MDAG.com Case Study #33, 2010)

Site Water Quality

- Collection pond water sampled and analyzed regularly for;
 - pH, specific conductance, sulphate, hardness
 - Metals (copper, iron, zinc)
- Water quality prediction made in 1992 as part of closure plan

Collection Ponds

Collection Ponds

Water Quality

- Clean diversion water released to lake is permitted through strict monitoring protocols
- Any water exceeding limits remains on site
- Water quality in collection ponds reflects the release of oxidation products and ongoing neutralization of acid as predicted in Closure Plan
- Monitoring program is effective at identifying compliance with permits and managing discharges to lake

Chemistry in Collection Pond 3-1D

Dashed Lines represent Permit Limits

Bell - Chemistry in Collection Pond 3-1D

Dashed Lines represent Permit Limits

If concentrations exceed Permit Limits then water is directed to the Tailings Pond (3-1D) or to the Open Pit (8D, 4-1)

Bell - Chemistry in Collection Pond 8 (always directed to Open Pit)

EcoMetrix

Bell - Chemistry in Collection Pond 8 (always directed to Open Pit)

Filling Pit

Water Quality in Pit Water

Pit Water Profiles in October 2009

EcoMetrix

Pit Water Quality with Depth

Sample ID		BMPW-0	BMPW-50	BMPW-100	BMPW-150	BMPW-200	BMPW-250	BMPW-300	BMPW-350	BMPW-400	BMPW-450	Average
Depth (m)		0	15	30	46	61	76	91	107	122	137	Values
Constituent	Units											
pН		3.89	4.02	4.07	4.04	4.04	4.03	4.00	4.00	4.00	3.98	4.01
Hardness (as CaCO3)	mg/L	3010	2870	2840	2830	2770	2800	2770	2830	2780	2940	2844
Sulfate	mg/L	2940	2960	2960	2940	2970	2950	2960	2960	2970	2930	2954
Copper (dissolved)	mg/L	9.10	8.67	8.80	8.47	9.03	8.43	9.00	9.08	9.00	9.12	8.87
Iron (dissolved)	mg/L	0.41	0.70	0.69	0.68	0.69	0.70	0.68	0.71	0.69	0.30	0.62
Zinc (dissolved)	mg/L	1.32	1.26	1.29	1.23	1.30	1.22	1.32	1.32	1.27	1.32	1.29

Pit Water Predictions

Water Quality Predictions

Example – South Dump

Location	*	рН	Copper Dissolved (mg/L)	lron Dissolved (mg/L)	Zinc Dissolved (mg/L)	Sulphate (mg/L)
South Dump Plant Site (CP 2)	а	7.0	4.0	<0.03	0.4	1000
	b	7.0	0.20	0.08	0.06	2000
	С	2.5	800	500	5.0	10,000
	d	5.8	10.8	2.0	0.92	5230

- a = Measured in 1992
- **b** = **Predicted for neutral pH conditions**
- **c** = **Predicted at full NP Depletion when pH becomes acidic**
- d = Measured in 2008

Predictions in Tailings

- Tailings near surface will become acidic
- Acid front will advance 2 m in 11 years
- Sulphide depletion rate of 0.7 m/a

 Not net acidic seepage from tailings because shallow acidic pore water will be neutralized when moving through unoxidized tailings below the water table

Sulphide Depletion in Tailings 2009

BT-A BT-B BT-C BT-D ST-G

Observed sulphide depletion much slower than predicted

NP Depletion in Tailings 2009

Neutralization Potential in the Tailings with Depth (kg CaCO₃/tonne)

Observed NP depletion much slower than predicted

Rinse pH in Tailings 2009

Field Rinse pH Values in Tailings Profiles

Observed acid front advancing much slower than predicted

Water Quality in Tailings Pore Water 2009

Soluble Sulphate Concentrations in the Tailings with Depth (mg/kg)

Water Quality in Tailings Pore **Water 2009**

Soluble Copper Concentrations in the Tailings with Depth (mg/kg)

Tailings Water Quality

- Some shallow tailings porewater has is acidic with elevated acidity and metals
- Wetter areas of tailings remain neutral with low acidity and metals
- Porewater pH is partially to completely neutralized within 1 m from surface
- Oxidation and acidification progressing much slower than predicetd
- Prediction of "no acidic tailings seepage" remains valid

Conclusions

- Extensive ABA and kinetic testing combined with available field data from 20 years of operation provided a basis for water quality predictions
- Static tests predicted acid generating conditions
- Kinetic data from several sources used to predict;
 - WHEN acidic conditions will begin
 - WHEN sulphide will be depleted
 - Water quality at <u>neutral</u> and <u>acidic pH</u> values

Conclusions

- Almost 20 years after predictions made;
 - Water quality associated with mine rock predictions remain valid and appear reasonable
 - Predictions for tailings were overly conservative for timing of acidification but remain valid fo longterm seepage quality

