Lessons learned from landfills about liner performance and leakage

R. Kerry Rowe
Professor and Canada Research Chair in Geotechnical and Geoenvironmental Engineering, Queen’s University
Kingston
Canada
www.geoeng.ca
Limitations

The information contained in this talk has been prepared solely for the guidance of those attending the workshop. It is not to be regarded as complete in itself and should not therefore be used without reading the cited references and independent examination and verification of its suitability for any particular project. Anyone making use of the information or material contained herein does so at their own risk and assumes any and all liability from such use.
Geosynthetics in Covers and Bottom Liners

There have been a very large number of successful applications.

Geosynthetics:

- work extremely well!!!, BUT
- they are engineered materials and need to be treated with the same respect as other engineered materials
Manufacturers provide many options:

- Different products are intended for different applications
- It is the engineers responsibility to select the right materials for their application
- You might get what you ask (and pay) for
- Good engineering can be relied on
- Luck is fickle
Topics

• Holes in geomembranes
• Leakage through geomembrane liners
• Leakage through clay liners
• Leakage through composite liners
 – Direct contact
 – Observed leakage
Plastics hold water well
Plastics hold water well - if no hole

Rapid water leakage through small hole
Holes in GM

- 2.5 – 10 holes/ha typical design value
- 3 holes/ha after installation*
- 12 holes/ha after placement of drainage layer*
- 5 holes/ha assumed in presentation
- Median equivalent radius – 5.6mm (typical)

* Nosko & Touze-Foltz (2000)
Topics

• Holes in geomembranes
• **Leakage through geomembrane liners**
• Leakage through clay liners
• Leakage through composite liners
 – Direct contact
 – Observed leakage
Leakage through single GM liner

<table>
<thead>
<tr>
<th>h_w (m)</th>
<th>r_o (mm)</th>
<th>Q (litres per hectare per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>500</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>2,000</td>
</tr>
<tr>
<td>0.3</td>
<td>5.6</td>
<td>63,000</td>
</tr>
</tbody>
</table>

GM 5 holes/ha

Rowe (2012)
Topics

• Holes in geomembranes
• Leakage through geomembrane liners
• **Leakage through clay liners (CCL and GCL)**
• Leakage through composite liners
 – Direct contact
 – Observed leakage
Cation Exchange and GCLs

• When hydrating or when hydrated, sodium bentonite may experience cation exchange (replacement of sodium ions by other cations such as calcium and magnesium)

• This cation exchange may be caused by cations:
 – in the bentonite
 – in the pore water of adjacent soil
Cation Exchange and GCLs

- A number of publications* examining GCLs after 3-10 years use in landfill covers have indicated cation exchange and:
 - a decrease in swelling capacity (SI)
 - an increase in hydraulic conductivity of SOME GCLs by as much as 5 orders of magnitude (to 10^{-6} m/s) – others had no significant change in k
 - high hydraulic conductivity associated with low moisture content of GCL ($\leq 50\%$)
 - effect depends on local conditions (especially thickness of soil above GCL and presence of cations in adjacent soil) AND type of GCL

- Design wisely!

Degree of saturation of GCLs

Why is it important?
Because it influences:
 – the effect of cation exchange from surrounding soil on GCL hydraulic performance
 – the ability of the GCL to limit oxygen movement
 – GCL panel shrinkage, etc.

and so we need to understand what influences the uptake of moisture by different GCLs
What influences Degree of Saturation

- How the GCL is manufactured (they are not all the same - even if they use the same bentonite)
- Grain size distribution of the soil on which it rests
- Water content of the soil on which it rests
- Cation exchange
- Drying cycles
- Normal stress on GCL
Calculated leakage through a single primary liner

<table>
<thead>
<tr>
<th>Liner</th>
<th>Q_{lphd}</th>
<th>Q_{lphd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>63,000</td>
<td>63,000</td>
</tr>
<tr>
<td>CCL</td>
<td>1,300</td>
<td></td>
</tr>
</tbody>
</table>

- CCL: $H_L = 0.6$ m, $k_L = 1 \times 10^{-9}$ m/s,
- GM: 5 holes/ha, $r_o = 5.6$mm

Rowe (2012)
Calculated leakage through a single primary liner

\[h_w = 0.3 \text{ m} \]

<table>
<thead>
<tr>
<th>Liner</th>
<th>Q (lphd)</th>
<th>Q (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>63,000</td>
<td>63,000</td>
</tr>
<tr>
<td>CCL</td>
<td>1,300</td>
<td>13,000</td>
</tr>
</tbody>
</table>

CCL: \(H_L = 0.6 \text{ m}, \ k_L = 1 \times 10^{-9} \text{ m/s}, \ k_L = 1 \times 10^{-8} \text{ m/s} \)

GM: 5 holes/ha, \(r_o = 5.6\text{mm} \)

Rowe (2012)
Calculated leakage through a single primary liner

\[h_w = 0.3 \text{ m} \]

<table>
<thead>
<tr>
<th>Liner</th>
<th>(Q) (lphd)</th>
<th>(Q) (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>63,000</td>
<td>63,000</td>
</tr>
<tr>
<td>CCL</td>
<td>1,300</td>
<td>13,000</td>
</tr>
<tr>
<td>GCL</td>
<td>1,300</td>
<td></td>
</tr>
</tbody>
</table>

CCL: \(H_L = 0.6 \text{ m}, \ k_L = 1 \times 10^{-9} \text{ m/s}, k_L = 1 \times 10^{-8} \text{ m/s} \)

GCL: \(H_L = 0.01 \text{ m}, \ k_L = 5 \times 10^{-11} \text{ m/s} \),

GM: 5 holes/ha, \(r_o = 5.6 \text{ mm} \)

Rowe (2012)
Calculated leakage through a single primary liner

<table>
<thead>
<tr>
<th>Liner</th>
<th>Q (lphd)</th>
<th>Q (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>63,000</td>
<td>63,000</td>
</tr>
<tr>
<td>CCL</td>
<td>1,300</td>
<td>13,000</td>
</tr>
<tr>
<td>GCL</td>
<td>1,300</td>
<td>13,000</td>
</tr>
</tbody>
</table>

$h_w = 0.3$ m

<table>
<thead>
<tr>
<th>Liner</th>
<th>H_L</th>
<th>k_L</th>
<th>k_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>0.6 m</td>
<td>1×10^{-9} m/s</td>
<td>1×10^{-8} m/s</td>
</tr>
<tr>
<td>CCL</td>
<td>0.01 m</td>
<td>5×10^{-11} m/s</td>
<td>5×10^{-10} m/s</td>
</tr>
<tr>
<td>GCL</td>
<td>0.01 m</td>
<td>5×10^{-11} m/s</td>
<td>5×10^{-10} m/s</td>
</tr>
</tbody>
</table>

GM: 5 holes/ha, $r_o = 5.6$ mm

Rowe (2012)
Topics

• Holes in geomembranes
• Leakage through geomembrane liners
• Leakage through clay liners
• Leakage through composite liners
 – Direct contact
 – Observed leakage
Leakage through GM in Direct Contact with Clay Liner

- GM
- GCL or CCL
- Interface between GM and clay liner (Transmissivity, Θ)
GM/GCL Interface Transmissivity, θ

- Harpur et al. (1993)

 2×10^{-10} m2/s (at 7 kPa)

- Barroso et al. (2008, 2010)

 $1-4 \times 10^{-11}$ m2/s (at 50 kPa) both smooth and textured GM

All for sodium bentonite – water as permeant
GM/GCL Interface Transmissivity, θ

- Mendes et al. (2010)

 2-3x10^{-11} m^2/s (at 50 kPa) Na-Bentonite with $k_L = 3\times10^{-11}$ m/s (water)

 3x10^{-11} m^2/s (at 50 kPa) Ca-Bentonite with $k_L = 7\times10^{-10}$ m/s to 6x10^{-8} m/s (water)

- Rowe and Abdelatty (2012)

 2x10^{-11} m^2/s (at 100 kPa) before clay-leachate interaction (water) $k_L = 3\times10^{-11}$ m/s

 1x10^{-11} m^2/s (at 100 kPa) after clay-leachate interaction (leachate) $k_L = 4\times10^{-10}$ m/s

Compared to $> 2x10^{-8}$ m^2/s for GM/CCL

Rowe (2012)
Single Composite Liner Systems

- Waste Geotextile
- Geomembrane
- Geosynthetic clay liner
- Foundation layer
GM in Direct Contact with GCL

GM with no wrinkles; cloudy November morning when ambient $T = 3 \, ^\circ\text{C}$
Calculated Leakage for Direct contact

<table>
<thead>
<tr>
<th></th>
<th>GM/GCL</th>
<th>GM</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_w (m)</td>
<td>Q (lphd)</td>
<td>Q (lphd)</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2</td>
<td>63,000</td>
</tr>
</tbody>
</table>

GM: 5 holes ($r_o = 5.64$ mm)/ha

GCL: $H_L = 0.01$ m, $k_L = 2 \times 10^{-8}$ m/s, $\theta = 1 \times 10^{-10}$ m2/s

Rowe (2012)
Calculated Leakage for Direct contact

<table>
<thead>
<tr>
<th></th>
<th>GM/GCL</th>
<th>GM/CCL</th>
<th>GM</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_w (m)</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q (lphd)</td>
<td>0.2</td>
<td>3</td>
<td>63,000</td>
</tr>
</tbody>
</table>

GM: 5 holes ($r_o = 5.64$ mm)/ha

GCL: $H_L = 0.01$ m, $k_L = 2 \times 10^{-8}$ m/s, $\theta = 1 \times 10^{-10}$ m2/s

CCL: $H_L = 0.6$ m, $k_L = 1 \times 10^{-9}$ m/s, $\theta = 2 \times 10^{-8}$ m2/s

Rowe (2012)
Composite Liner Topics

• Holes in geomembranes
• Leakage through geomembrane liners
• Leakage through clay liners
• Leakage through composite liners
 – Direct contact
 – Observed leakage
Observed leakage

<table>
<thead>
<tr>
<th>GM/CCL</th>
<th>Avg. Monthly flow (lphd)</th>
<th>Peak monthly flow (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (Typical)</td>
<td>Max.</td>
</tr>
<tr>
<td>Active</td>
<td>90</td>
<td>260</td>
</tr>
</tbody>
</table>

Based on data from Bonaparte et al. (2002) and Rowe (2005)
Observed leakage

<table>
<thead>
<tr>
<th></th>
<th>Avg. Monthly flow (lphd)</th>
<th>Peak monthly flow (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (Typical)</td>
<td>Max.</td>
</tr>
<tr>
<td>GM/CCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>90</td>
<td>260</td>
</tr>
<tr>
<td>GM/GCL</td>
<td>1.5</td>
<td>11</td>
</tr>
</tbody>
</table>

Based on data from Bonaparte et al. (2002) and Rowe (2005)
Observed Leakage

<table>
<thead>
<tr>
<th></th>
<th>Avg. Monthly Flow (lphd)</th>
<th>Peak Monthly Flow (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (Typical)</td>
<td>Max.</td>
</tr>
<tr>
<td>GM/CCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>90</td>
<td>260</td>
</tr>
<tr>
<td>Closure</td>
<td>50</td>
<td>220</td>
</tr>
<tr>
<td>GM/GCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td>Closure</td>
<td>0.6</td>
<td>2</td>
</tr>
</tbody>
</table>

Based on data from Bonaparte et al. (2002) and Rowe (2005)
Observed leakage

<table>
<thead>
<tr>
<th></th>
<th>Avg. Monthly flow (lphd)</th>
<th>Peak monthly flow (lphd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (Typical)</td>
<td>Max.</td>
</tr>
<tr>
<td>GM/CCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>90</td>
<td>260</td>
</tr>
<tr>
<td>Closure</td>
<td>50</td>
<td>220</td>
</tr>
<tr>
<td>GM/GCL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td>Closure</td>
<td>0.6</td>
<td>2</td>
</tr>
</tbody>
</table>

Based on data from Bonaparte et al. (2002) and Rowe (2005)
Observations

• To minimize leakage you need a composite liner

• Data shows that composite liners with a GCL perform much better than a composite with a CCL

BUT

• Observed leakages 10 to 10,000 times larger than calculated using traditional equations assuming direct contact and a reasonable number of holes/ha – why?
Lessons learned from landfills about liner performance and leakage

R. Kerry Rowe

Questions?