Diavik Waste Rock Project

Northern Aspects and Scaling Predictions

Richard T. Amos
Brenda L. Bailey
Nam Pham
Nathan Fretz
Stacey Hannam

David W. Blowes
David C. Sego
Leslie Smith
Site Location

[Map showing the location of Diavik Diamond Mine and Yellowknife in Canada]
Introduction – Site location
Diavik Waste Rock Project

Research Goals – Diavik Waste Rock Project

• Understand the geochemical, hydrological, and thermal conditions controlling the generation of acidic leachate from waste rock stockpiles in a permafrost environment.

• Determine the value of small-scale laboratory tests for predicting if and when low quality drainage may be released from a stockpile.
Diavik Waste Rock Project

Introduction – Test piles background

- Waste rock type/management

<table>
<thead>
<tr>
<th>Type</th>
<th>S Content (wt. %)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>< 0.04</td>
<td>Predominantly granites</td>
</tr>
<tr>
<td></td>
<td>wt. % S</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>0.04 – 0.08</td>
<td>Predominantly granites with small amount of biotite schist</td>
</tr>
<tr>
<td></td>
<td>wt. % S</td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td>>0.08</td>
<td>Predominantly granites with greater amount of biotite schist</td>
</tr>
<tr>
<td></td>
<td>wt. % S</td>
<td></td>
</tr>
</tbody>
</table>
Research Facilities

- Laboratory humidity cell experiments
 - 18 Cold room
 - 18 Room Temperature
- 2 m-scale active zone experiments
 - 2 Type I (low sulfide)
 - 2 Type III (higher sulfide)
- Test-scale waste rock piles
 - Type I (low sulfide)
 - Type III (higher sulfide)
 - Covered (Type III core with till and Type I cover)
- Instrumented full-scale waste rock dump
 - 4 x 40 m vertical drill holes
 - 1 x 80 m vertical drill hole
 - Horizontal instrument lines
Test Piles Research Area

Type I Test Pile
0.035 wt.% S

Type III Test Pile
0.053 wt.% S

Active Zone Lysimeters

Covered Test Pile
3 m Type I
1.5 m Till
13 m Type III
0.082 wt.% S
Diavik Waste Rock Project

- Permeability
- Hydrology
- Gas
- Thermal
- Data
- Pore water
- Microbiology
- Lysimeters
- Upper lysimeters
- Sampling station
- Effluent
Full-scale Instrumentation

- 3 drill holes
 - 32, 31 and 40 m deep
- 80 m drill hole
- 40 m drill hole
- Horizontal Installation
 - 120 m and 280 m

- Thermistors, Gas sampling lines, Thermal conductivity, Microbiology, SWSS, Permeability, ECH_2O probes,
- Cuttings collected
 - Mineralogy, Sulfur and Carbon analysis
Journal Publications

- **Applied Geochemistry (2012)**

Conference Presentations and Proceedings

- **Tailing and Mine Waste (November 6-9, 2011, Vancouver)**
 - Pham et al., Diavik Waste Rock Project: Thermal transport in a covered waste rock test pile.
 - Smith et al., Diavik Waste Rock Project: Characterization of Particle Size, Sulfur Content and Acid Generating Potential.

- **2012 ICARD (May 20-26, 2012, Ottawa, ON, Canada.)**
 - Bailey et al., Diavik Waste Rock Project: Geochemistry of low sulfide content large-scale waste rock piles.
 - Bailey et al., Diavik Waste Rock Project: Microbiological succession in waste rock piles.
 - Pham et al., Diavik Waste Rock Project: Heat transport and the effects of climate change in a waste rock pile located in a continuous permafrost region of Northern Canada.
 - Smith et al., Diavik Waste Rock Project: Objectives, implications and current conclusions.
 - Stanton et al., Diavik Waste Rock Project: Laboratory studies.
Diavik Waste Rock Project

Research Highlights

Hydrology
TDR Locations – Type III Test Pile

- TDR sensors installed below crown of test pile
- Ambient air temperature restricts infiltration and water movement in the test pile.
- The portion of the test pile that contributes to outflow changes with the generation of the active-zone.
Wet-Up of Matrix Fraction (Type III Test Pile)

Green = 1m Blue = 3m Pink = 5m Red = 9m

Wetting front reaches 3 m depth
Wetting front reaches at least 7 m depth, but not 9 m
Concurrent arrival of thaw front and wetting front at 9 m depth

Basal collection lysimeters at the base of the test pile recorded outflow starting in September of 2008.
Diavik Waste Rock Project

Annual Outflow Response (Type III Test Pile)

Total Rainfall:
- 2007: 92 mm (55% of Avg)
- 2008: 154 mm (92% of Avg)
- 2009: 74 mm (44% of Avg)
- 2010: 98 mm (58% of Avg)
- 2011: 146 mm (87% of Avg)

Total Outflow:
- 2007: 110 m³
- 2008: 150 m³
- 2009: 117 m³
- 2010: 213 m³
- 2011: 176 m³
Annual Outflow Response (Test Pile)

- Variations in the timing and magnitude of outflow over multiple years are a function of:
 - Timing of active-zone generation
 - Snow accumulation and melt
 - Timing and magnitude of rainfall events
 - Antecedent moisture contents and wetting front locations held in storage over the previous winter

- TDR, basal collection lysimeter, and basal drain response indicate that, in terms of outflow volumes, the test piles are batter dominated systems.
 - 100%, 84%, 94%, 97%, and 72% of total outflow in 2007, 2008, 2009, 2010, and 2011, respectively
Methods for estimating net infiltration

1. Water balance at the AZLs to back-out net infiltration

\[
\text{Net Infiltration} = \text{Rainfall} - \text{Evaporation} = \text{AZL Annual Outflow}
\]

2. FAO-Model to estimate evaporation

FAO Penman-Monteith formulation

\[
\text{ET}_0 = \text{reference evapotranspiration} = 0.408 \Delta (R_n - G) + \gamma (37/(T_{hr} + 273))u_2(e^o(T_{hr}) - e_a) \\
\Delta + \gamma (1 + 0.34u_2)
\]

Coefficient to determine actual evaporation

\[
E = K_e \text{ET}_0 K_f \\
E = \text{actual evaporation}
\]

\[
K_e = \text{soil evap. coefficient} \\
K_f = \text{frozen soil coefficient}
\]

Net infiltration = Rainfall – Actual Evaporation
FAO-Model results

<table>
<thead>
<tr>
<th>Year</th>
<th>AZL with Min %NI</th>
<th>AZL with Max %NI</th>
<th>FAO Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>35%</td>
<td>54%</td>
<td>46%</td>
</tr>
<tr>
<td>2009</td>
<td>8%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>2010</td>
<td>38%</td>
<td>43%</td>
<td>29%</td>
</tr>
<tr>
<td>Year</td>
<td>Test Pile</td>
<td>Rainfall (mm)</td>
<td>FAO % Net Infiltration</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2007</td>
<td>Type I</td>
<td>92</td>
<td>31%</td>
</tr>
<tr>
<td>2007</td>
<td>Type III</td>
<td>153</td>
<td>48%</td>
</tr>
</tbody>
</table>
Research Highlights

Thermal Regime
Covered test pile: Cross section A-A and Profile

Thermistor location
Results: Active layer thickness

- The active layer stays within the 2 m thick Type I waste rock cover above the till.
- At the top of the till layer temperatures varied between 0 °C and -12.2 °C.
- At the base of the till temperatures varied between 0 °C and -8.2 °C.
- Underlying Type III waste rock remains colder than 0°C year round.
Results: Net radiation and heat fluxes

- **Net radiation**
 - Maximum value: 96.5 W m\(^{-2}\) in July
 - Minimum value: -69.7 W m\(^{-2}\) in mid Dec.
 - \(R_n (\text{W m}^{-2}) = 13.4 + 83.1 \sin(2\pi t/365 - 1.30)\)

- **Ground surface heat flux:**
 - Maximum: 20.4 W m\(^{-2}\) in July
 - Minimum: -28.6 W m\(^{-2}\) in mid Dec.
 - The fitting curve: \(G = -4.1 + 24.5 \sin(2\pi t/365 - 1.35)\)

- The mean annual heat flux across the bottom of the till: -1.78 W m\(^{-2}\) which is 43 % of mean annual surface heat flux

- Negative heat flux through the till means that heat is removed from the underlying Type III waste rock
Full-Scale Thermal Regime

- 3 drill holes
 - 32, 31 and 40 m deep
Results: Ground temperatures

- Initial 0°C isotherms are at about 11 m below the surface.

- Initial depth affected by the drilling processes and temperature disturbances at the drill holes.

- The temperatures at the drill hole locations are usually warmer than undisturbed ground temperatures.
Results: Simulation

- Two cases:
 - Case 1: 1-D heat conduction:
 - Case 2: 1-D heat conduction with 1.5-m till and 3-m Type I rock.

- Boundary conditions are no flux at the base and surface temperature.

- Surface temperature

\[
T_s = -6.3 + 20.3 \sin \left(\frac{2\pi t}{365} \right) + \frac{0.056t}{365}
\]

- Warming rate of surface temperature is 5.6°C over 100 years.
Results: Simulation (Case 1 – Uncovered)

- Active layer thickness dynamically changes with time and is at 7m after 100 years due to the warming climate.
- It reaches its minimum value of 4 m in 2020 and then increases steadily to 7 m in 2110.
- Maximum ground temperatures at 4m and 7m reach 0°C in 2040 and 2110 respectively.
- Below 20m, ground temperatures show no annual variations and the changes are due to warming climate.
- At greater depths, the impacts of warming climate come later.
Results: Simulation (Case 2 – Covered Pile)

- Active layer is at 3m (top of the till) for the period between 2020 and 2040, however, its thickness increases to 3.9m (within till layer) in 2110.

- Maximum ground temperature at 3m (top of the till) is above 0°C after 2040 due to warming climate.

- Ground temperatures below 20 m are similar to the case 1
Results: Simulation (Case 2 – Covered Pile)

- Trumpet curve of ground temperatures of the waste dump indicates:
 - Active layer is at 3.9 m depth which is 0.9 m into the till
 - Without warming climate, the active layer will be contained within the Type I rock.
 - The Type III rock below the till stay below 0°C (about -2.5°C) under the proposed climate change.
Research Highlights

Geochemistry
Uncovered Test Pile Geochemistry

- **pH**: 4, 5, 6, 7, 8
- **Alkalinity (mg/L CaCO3)**: 0, 20, 40, 60, 80
- **SO4²⁻ (mg/L)**: 0, 1000, 2000, 3000

<table>
<thead>
<tr>
<th>Year</th>
<th>1Bxxd13</th>
<th>3BSxxd15</th>
<th>3BNxxd15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uncovered Test Pile Geochemistry

Ni (mg/L)

Co (mg/L)

Fe (mg/L)

2007 2008 2009 2010 2011 2012
Uncovered Test Pile Geochemistry

Cu (mg/L)

Zn (mg/L)

Cd (mg/L)

2007 2008 2009 2010 2011 2012

1Bxxdrrn13
3BSxdrn15
3BNxdrn15

Diavik Waste Rock Project
Covered Test Pile Geochemistry

- **pH**
 - pH values range from 4 to 7.

- **Alkalinity (mg/L CaCO3)**
 - Alkalinity values range from 0 to 25 mg/L CaCO3.

- **SO₄²⁻ (mg/L)**
 - SO₄²⁻ concentrations range from 0 to 5000 mg/L.

Data points for the years 2007 to 2012 are plotted.
Covered Test Pile Geochemistry

Diavik Waste Rock Project

Ni (mg/L)

Co (mg/L)

Fe (mg/L)

2007 2008 2009 2010 2011 2012

CBxdrn13
Sulfide Mineral Weathering: Full-Scale Dump

Diavik Waste Rock Project
Sulfide Mineral Weathering: Full-Scale Dump
Sulfide Mineral Weathering: Full-Scale Dump

Diavik Waste Rock Project
Diavik Waste Rock Project

Research Highlights

Scale-up
Scale-up Calculations

- Reactive transport modelling of humidity cell experiments
 - Develop robust conceptual model of sulfide mineral oxidation and geochemistry to be applied to larger scales
 - Calibrate model to sulfide content, mineral surface area and temperature effects
 - Only measurable parameters adjusted in input files
 - Additional calibrations underway
Scale-up Estimates

- Concentration calculations based on:
 - Reaction rates from humidity cell experiments
 - Rates scaled to weathering age of rock
 - Estimated residence time
- Estimates normalized to
 - Mass of rock
 - Mass of solid phase sulfur
 - Estimated surface area of solid phase sulfur
- No temperature correction
- Simple residence time estimate
Concentration Estimates
Type III Upper Collection Lysimeters - Nickel

- Estimated by Kg Rock
- Estimated by Kg Sulfur
- Estimated by Surface Area Sulfur
- Type III West UCL
- Type III East UCL

Date:
- 28/Apr/2007
- 14/Nov/2007
- 01/Jun/2008
- 18/Dec/2008
Concentration Estimates
Type III Upper Collection Lysimeters - Iron

Probable Solubility Control
Supersaturated with respect to Goethite

Date
Thank You!

Questions?