Overcoming Hurdles and Unexpected Help in Maintaining Tailings Ponds as Wetlands, Fisheries and Bioreactors at Highland Valley Copper, BC

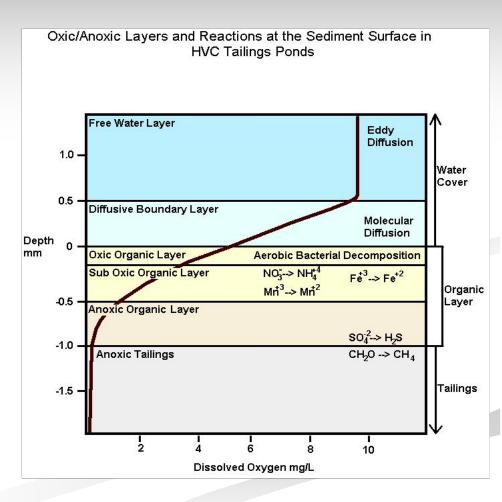
Highland Valley Copper

Presentation Outline

- Goals of tailings pond reclamation at HVC
- Overview of techniques we used
- How are we doing with tailings ponds as bioreactors?
- How are we doing as wetlands and fisheries?
- Before / After decade shots of 3 HVC tailings

The Goal: Reclaim the tailings facility as sustainable habitat,

Trojan tailings pond: fishing derby


Trojan tailings pond: Great Blue Heron

....that also acts as a bioreactor

Removes metals
Removes nitrogen
Removes sulphate

Equations for metal sulphide formation: $2H^+ + SO_4^{2-} + 2CH_2O > SRB > H_2S + 2HCO_3^{-1}$ $H_2S + M^{2+} >> MS + 2H^+$

 $2CH_2O = organic compounds$ $2HCO_3^- = bicarbonate$ M = metal ionsMS = metal sulphide precipitate

Shallow versus deep habitat goals

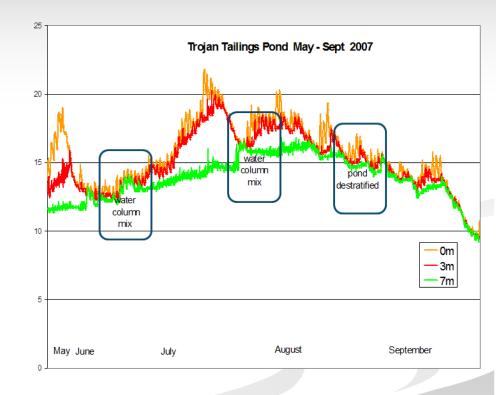
Shallow (1-5 m) tailings ponds

 Waterfowl + shorebird + wildlife habitat Deep (>7 m) tailings ponds

Fisheries + wildlife

Stable ponds water levels are ideal but expensive

 High water drowns shoreline plantings in high water (challenging on shallow slopes)



 Too many low water seasons desiccates aquatics, reducing them to seed banks

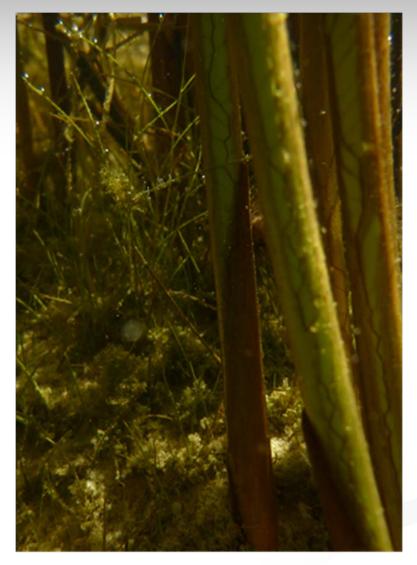
Tailings pond volume and depth affects thermal behavior

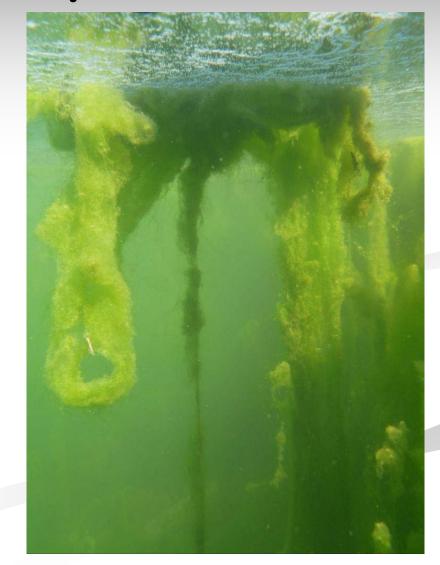
Ponds deep enough to thermally stratify with periodic mixing, 6-8 m in the case of Trojan, is ideal to maintain productivity during the summer.

Organic sediments are essential to habitat value and bioreactor function

- With the inorganic nutrients in place, bacterial development starts and a nutrient/vitamin-rich organic sediment layer will begin to form (<1 mm/year, initially)
- The upper few mm of sediments hosts 99% of all the bacteria in the water body and is crucial habitat for invertebrates

Bacteria are crucial to bioreactors

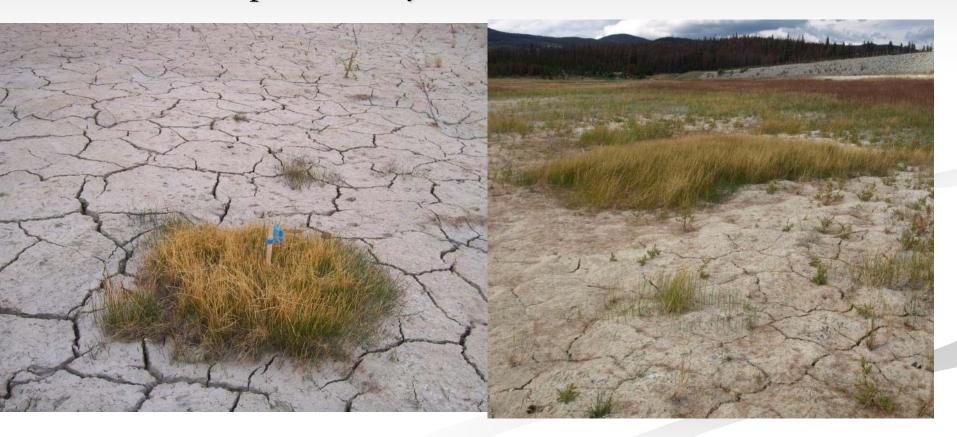

- After water chemistry is suitable, photosynthetic bacteria and chemotrophs grow without assistance.
- Accelerate bacteria colonization by introducing surface substrate from other ponds or by introducing aquatic plants.
- After algae and plant organic carbon is available, bacterial flora expand rapidly.
- Bacterial colonization only took 4


 5 years in Trojan but is still
 expanding after 18 years.

Getting grown-in-place organics started, incrementally

Reclamation Techniques Submerged aquatic plant introductions

Reclamation Techniques Submerged aquatic plant introductions



Reclamation Techniques **Riparian Emergent Introductions** sedge transplants + 4 years =

Reclamation Techniques Riparian Emergent Introductions

Rush transplants + 7 years =

Reclamation Techniques Riparian Emergent Introductions

Cattail transplants and seed + 8 years =

Reclamation Techniques Riparian Emergent Introductions

Cattails from seed after 1, 2, and 4 years =

Reclamation Techniques Shrubs from Stakes

Willow - readily roots
 from stakes in moist
 substrate; tolerates
 inundation after it is
 established

 Cottonwood - roots from stakes, takes drier conditions than willow after the stakes are established

Reclamation Techniques Shrubs from Stakes

- Stakes-in-pots growing in a mix of tailings and organic material so plants are used to tailings
- works for willow, cottonwood, and
 - red osier dogwood
- Similar survival to planting tree plugs

Reclamation Techniques Shrubs from Stakes

Live Logs/ living retaining walls

Reclamation Techniques Potted trees – Byland Poplar

Reclamation Techniques

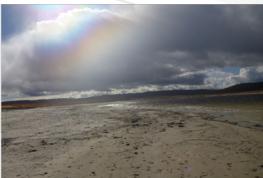
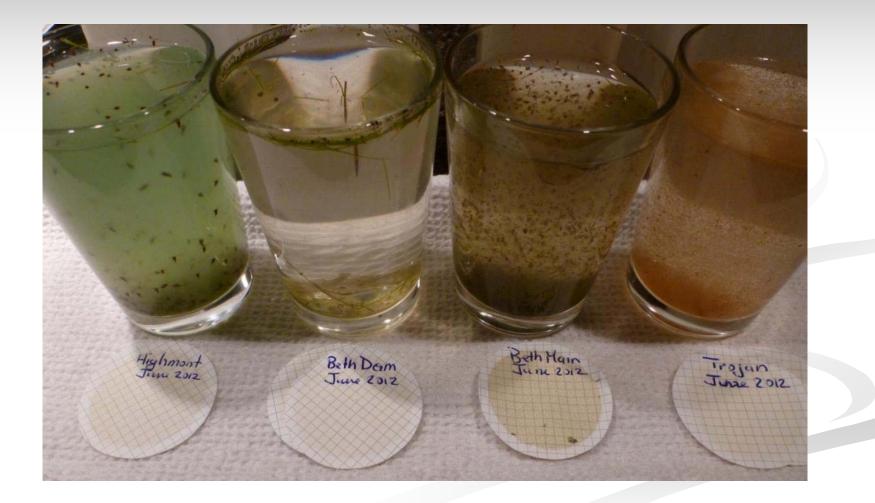

Riparian Grass Seed Mix (Richardson's)

Photo 4.0-1: High Spring and Low Fall Water Levels Showing Riparian Seed Trial, Trojan Tailings, 2012

After the seed trial was raked into the tails in June (photo left), it was flooded within two weeks and remained flooded until late August. It subsequently sprouted and some grasses set seed by early October (photo above)


Reclamation Techniques Zooplankton & Invertebrate Introductions

Invertebrate collection

- Caution!! Permit needed
- Screen bucket (selective)
- Soaked hay bales (nonselective)
- With plant introductions (non-selective)

Each HVC tailings pond developed different chemistry, microflora and zooplankton

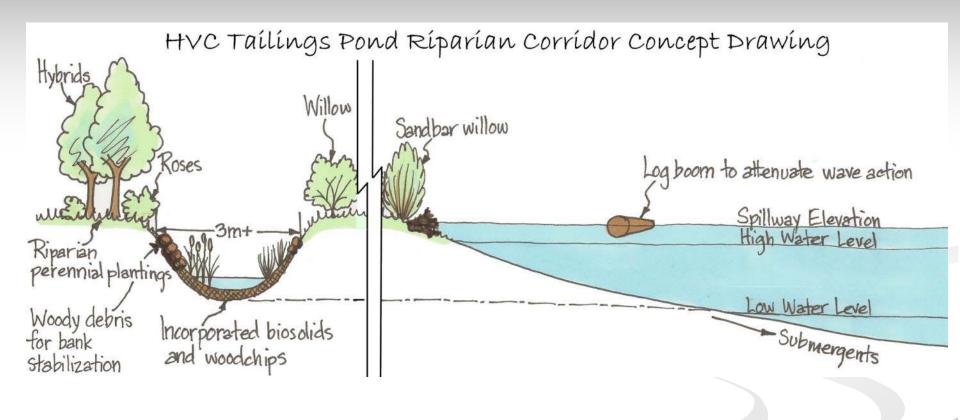
Introducing fish

- Initially used hatchery fish (gradually acclimatize before introduction)
- Trojan spawning channel
- Balance recruitment/yr from spawning channel vs fish size in pond. We want a "balanced, managed, age class structure"

 In 2012, Trojan fishing derby results showed 219 RBT caught per session versus 37 RBT in nearby Tunkwa Lk

- Fish size ranged from
 20–46 cm with an
 average of 28 cm (SD 5.7)
- Thanks to a golden eagle, we have too many fish in one age class

Problems - Predators


Deer / MooseRodent girdling

Enter, Mountain Pine Beetle

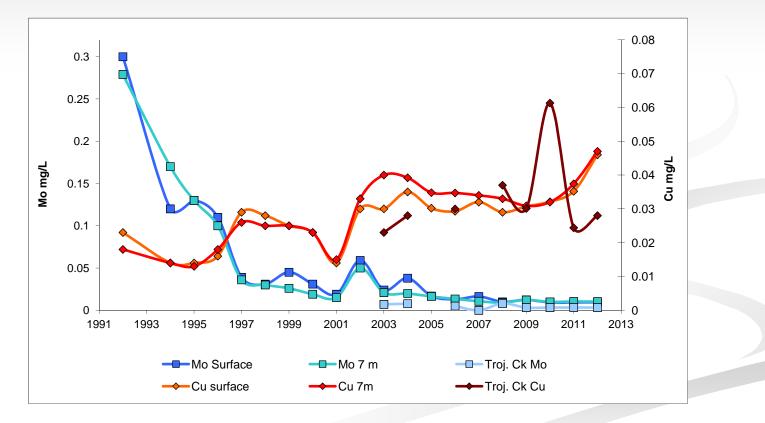
Flooding. rethink

Trojan tailings pond, next phase

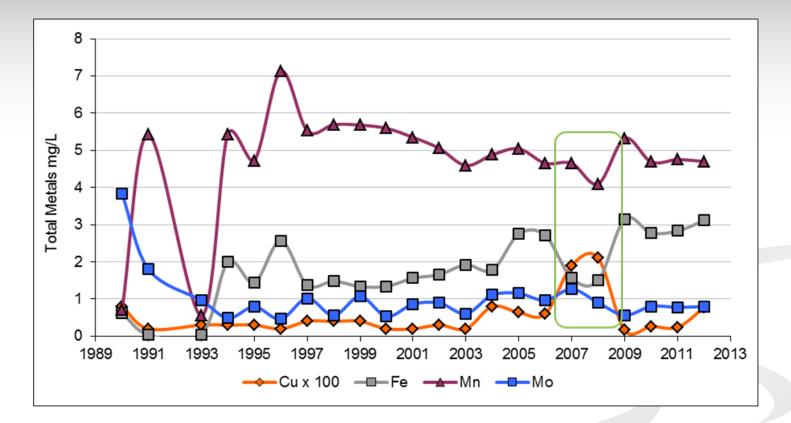
So how are we doing??

Water chemistry in shallow HVC tailings ponds

Table 4.2-2: Water Chemistry in Bethlehem and Highmont Tailings Ponds


2012 HVC Tailings Maximum									
Summer Water Cover			Beth Dam	Beth Main	Highmont				
	Units	RDL	7/18/2012	6/26/2012	6/27/2012				
Alkalinity	mg/l	1	105	115	178				
Turbidity	NTU		3.75	3.21	3.37				
NO ₂ & NO ₃	mg/l	0.01	<0.010	<0.001	<0.0010				
NH ₃	mg/l	0.01	0.0309	0.0223	0.0171				
Total N	mg/l	0.01	1.49	1.62	1.13				
SO ₄	mg/l	10	568	16.8	149				
pН	pH unit		10.14	8.38	8.84				
Conductivity	us/cm	2	1120	246	648				

NOTE: RDL = Reportable Detection Limit



Metals in Trojan pond and inflow

Figure 4.1-3: Annual Average Total Aqueous Metals in Trojan Tailings Pond, Growing Seasons of 1992 – 2012

Total Metals in Bethlehem Tailings Seepage

Highmont Tailings Total Mo and Cu

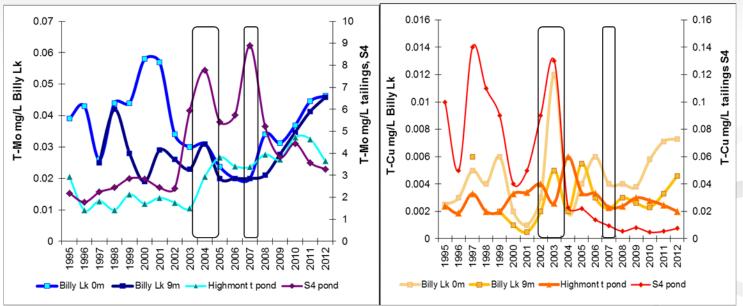
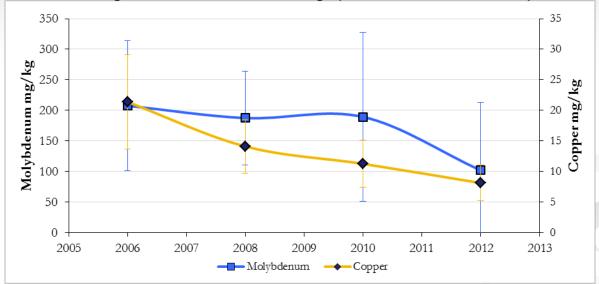



Figure 4.3-1: Total Mo and Cu in Highmont Tailings Pond and Seepage, Compared to Billy Lake 1995 – 2012

*first box 2004-5 refilling Highmont pond, second box, dam re-sloping

metals in riparian vegetation over time

Figure 4.0-2: Autumn Copper and Molybdenum Foliar Concentrations for Riparian Vegetation Grown on HVC tailings (standard error bars shown)

Tissue metals and bioaccumulation at HVC

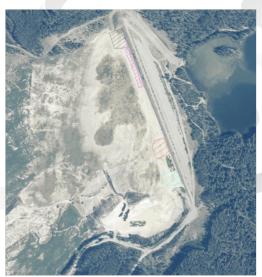
Table 4.0-4: Summary of Mo and Cu Content in Aquatic Plant and Invertebrate Tissue at HVC Tailings Ponds, 1995 – 2012

Tissue type	Species	Mo range	Мо	Cu range	Cu	#
		mg/kg	mean	mg/kg	mean	samples
Blue-green algae	Anabaena, Anacystis	1.4 – 20	10.6	240 - 360	300	4
Benthic + b-g mat	Many species	34 - 520	180	720 - 3300	1600	7
Filamentous algae	Cladophora etc	36 - 479	260	12 - 1322	218	11
Large stonewort algae	Chara vulgaris	8 - 67	14	15 – 250	220	4
Fully submerged	Native milfoil	5 - 90	22	100 – 700	250	8
	P. pectinatus	5 -154	111	117- 2204	220	9
	P. pusillus	5 -158	32	100 – 919	500	8
Floating leaves	Ranunculus aquatilus	5 - 466	87	180 –811	350	9
-	P. Richardsonii	25 - 166	101	112 - 301	212	8
Decomp plant muck	Many species	24 - 325	185	118 - 1173	525	7
Invertebrates	Many types	2.8 -13.3	7.7	100 -274	145	10
Riparian Tree	Willow Salix spp	16 - 390	81.4	6.5 – 41	24.9	25
	Cottonwood	7 - 230	61	5 — 55	19	11
	Hybrid aspen/cwood	56 - 1000	263	5 – 73	17	34
Riparian Emergents	Sedge	5 - 280	90	2 – 44	14	17
	Cattail	6 - 318	70	1.9 – 78	10.6	13
	Rush Juncus sp	34 - 780	193	2.3 – 76	19.7	14
	Bulrush	2.9 - 870	275	2.4 -8.5	4.7	4
Terrestrial (HVC Report)	Grasses	5 – 380	50	9 - 53	9.4	many
	Giant Wild Rye (BD)	9.2 - 17	13	6.2 - 11	8.6	2
	Legumes – alfalfa	110 - 810	175	15 – 19	12	many

*all samples taken in growing season; largest averages are bolded (Cattle Mo tolerance is 64 mg/kg in forage but can

"Time Lapse" Glory Shots

Highmont

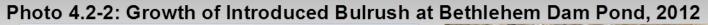

Trojan

Bethlehem Main

Bethlehem at Dam

Bethlehem Dam Tailings

Bethlehem Dam Tailings


Bethlehem Dam Tailings (yr 6) September 2006 hybrid cottonwood-aspen planting

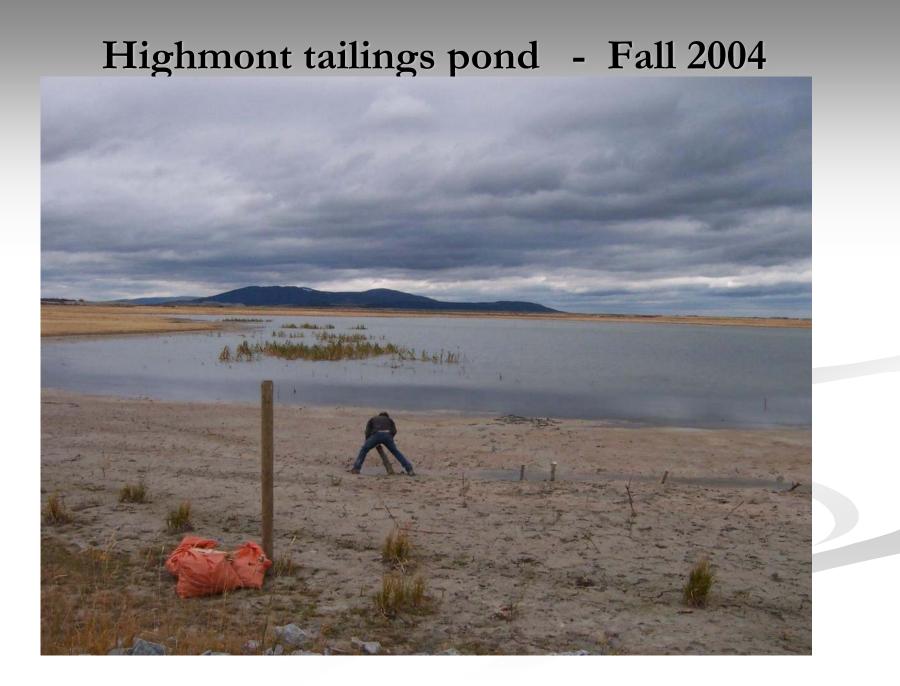
Transplanted and Seeded Riparian Vegetation on Bethlehem Dam Tailings June 2010 (yr 10) and July 2012 (yr 12)

Bethlehem Dam Tailings 2012

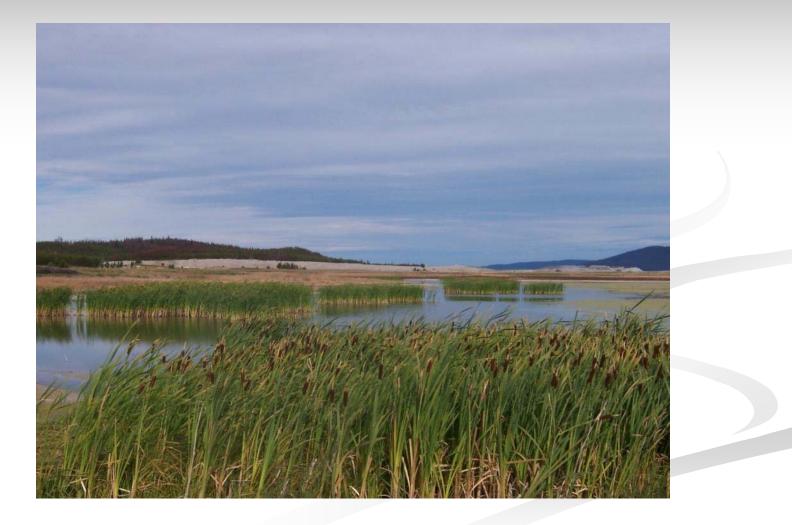
Bethlehem Dam Tailings Fall 2013

Bethlehem Main Tailings macrophyte resurgence

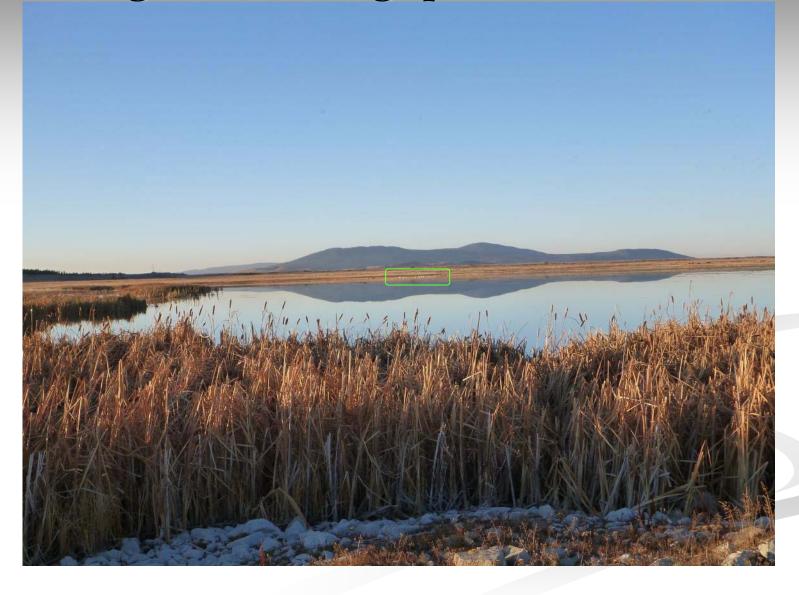
Photo 4.2-1: Introduced Aquatic Macrophyte and Filamentous Algae Growth in Bethlehem Main Pond, 2012



Highmont tailings pond Fall 2000



Highmont tailings pond - Summer 2001



Highmont Tailings Pond - Summer 2006

Highmont tailings pond - Fall 2013

SUMMARY

The establishment of aquatic ecosystems with habitat and bioreactor function would occur naturally without intervention at HVC tailings ponds, but over a much longer period.

Perspective: HVC tailings water compared to bottled mineral water?

Appendix 10 Comparison of Commercial Mineral Waters and Highland Valley Copper Minewater

Water quality mg/L	TDS	Cadmium	Floride	Aluminum	Lead	Nickel	Sodium	Calcium	Potassiun	n Nitrate	Sulphate	Cost/L
Maximum Acceptible Concentration		0.005	1.5	0.5	0.05	0.15				10	500	cnd 1990
Canada Dry Club Soda	830	ND	1.1	0.026	ND	ND	390	14	3.4	ND	28	0.79
Gerolsteiner Sprudel	1560	0.01	0.5	0.29	0.035	0.04	300	280	32	ND	28	1.69
Perrier	490	0.005	0.2	0.15	ND	ND	14	136	0.59	6	58	1.85
Pellegrino	1250	0.006	0.6	0.4	0.024	ND	42	160	3.8	ND	500	2.25
Sparcal	1170	0.006	0.2	0.25	0.016	ND	31	280	2.1	ND	759	1.56
Vittel Grande Source	640	0.008	0.3	0.022	0.031	0.022	3	240	2.1	1.5	500	0.56
Apollinaris	1870	0.007	0.5	0.038	0.014	0.026	820	120	56	1.8	105	1.69
MontClair	1400	0.005	1	0.016	ND	ND	850	30	17	ND	50	1.98
Montellier	800	0.004	1.6	0.335	ND	ND	555	ND	5.7	ND	ND	1.58
President's Choice E Canada	1000	0.04	3	0.078	ND	ND	640	20	12	ND	ND	1.45
President's Choice W Canada	1020	0.007	0.2	2.4	0.023	0.02	45	240	4.6	17	270	1.18
Radnor	1950	0.008	2.2	0.02	ND	0.022	830	120	19	ND	88	0.65
KarlSpring	2900	0.01	0.2	0.072	0.029	0.041	2000	140	245	ND	20	1.58
Radenska	2550	0.01	0.7	ND	0.036	0.035	1400	240	220	ND	110	1.69
Steinberg	1950	0.006	1	ND	ND	0.023	1500	20	25	ND	ND	0.52
VichyCelestins	3200	0.012	4	ND	0.036	0.041	2400	115	200	ND	120	1.41
Abenakis	23000	0.064	0.2	ND	0.14	0.2	12000	320	160	ND	685	1.58
Trojan tailings pond	NS	<0.005	NS	<0.01	<0.005	<0.01	4.4	23	2.4	< 0.003	9.6	0
S5 discharge	NS	<0.005	NS	<0.01	<0.005	<0.01	80	78	9.1	<0.003	140	0
Highmont E Pit surface	NS	< 0.005	NS	<0.01	<0.005	< 0.01	33	58	3.2	< 0.003	180	0

Questions?

