

Scaling Geochemical Loads in Mine Drainage Chemistry Modelling

from humidity cell leachate to mine-site drainage chemistry

Timo Kirchner & Bruce Mattson

21st annual BC MEND ML/ARD workshop December 3-4, 2014

Lorax Environmental Services Ltd.

Outline

- **1. Geochemical Loading Rates**
- 2. Scaling Factors
- 3. Approach
- 4. Study sites
 - Site A acidic pH
 - Overview
 - Geochemical loads and bulk scaling factors
 - Geochemical concentrations
 - Site B neutral pH
 - Overview
 - Geochemical loads and bulk scaling factors
 - Geochemical concentrations
- 5. Conclusions

Kinetic Experiments

Geochemical Loads

Geochemical load = HC Loading Rate x Time x Mass of Rock Dump

- $\rightarrow Drainage Concentration = \frac{Geochemical Load}{Seepage Volume}$
- Upscaling to full mine rock facility tonnage generally leads to unrealistically high predicted drainage concentrations
- Scaling factors are commonly applied to account for discrepancies in small-scale vs mine-scale conditions

Scaling Factors

For example:

- Temperature
 - Pyrite oxidation and carbonate solubility are temperature dependent
- Water contact or water-rock ratio
 - Development of preferential flow paths will isolate reactive particle surfaces within the waste facility
- Grain size
 - Standardized humidity cell samples have a P₈₀ of -6.4mm → higher proportion of reactive surface area compared to dump materials

Adjusted Geochemical Load =

HC Loading Rate x Time x Mass of Rock Dump x SF₁ x SF₂ ...

Lorax Environmental Services Ltd.

Known:

•

www.lorax.ca

Empirical bulk scaling factor can be derived: SF_{bulk}= SF₁ x SF₂ x ... x SF_x

Laboratory leachate

Leaching rates (mg/kg/wk)

Upscaling using scaling factors

uncertainty

If known:

- Drainage chemistry (mg/L)
- Waste dump tonnage
- Waste dump composition
- **Seepage flow rates** •

Approach

Study sites

- One site releases acidic drainage, the other has neutral drainage
- Both sites are located in semi-arid environments

		Site A (acidic)		Site B (neutral)
Material Type		Oxide Sulphide	Sulphide	Diorite
Total S	%	0.82	2.9	0.22
Sulphide S	%	0.020	2.5	0.030
NP	kg CaCO3/t	-1.0	-1.1	88
NPR		<0	<0	40
WRSA tonnage	Mt	57	38	2.7
WRSA footprint	ha	91		9.9
Mean precipitation	mm/yr	510		310
Mean temperature	°C	12	2.3	6.3

Site A – geology

- Porphyry-gold deposit hosted in a highly altered intermediate to felsic volcanic system
 - Primarily latite flows and volcaniclastic sediments
- Environmentally, two main waste rock categories were defined:
 - 1. Oxide
 - (low sulphide S, strongly weathered to Fe-oxyhydroxide and sulphate assemblage)
 - 2. Sulphide
 - (high sulphide S, mostly pyrite with minor Zn- & Cu-sulphides, as well as hydrothermal alunite)

FOV = 0.75 mm

Site A – kinetic test pH

- pH values are variable depending on scale, waterrock ratio, and waste rock material
 - Higher in humidity cell leachates
- Stored acidity and mineral reprecipitation likely contributes to the low pH values in field bin leachates

- Waste dump drainage initially circum-neutral, turning acidic over time •
 - Increasing influence of Sulphide waste rock

Site A – loading assumptions

- Best estimate:
 - Waste dump drainage loads were calculated based on average chemistry and average flow rates into seepage collection pond
- Conservative case:
 - Waste dump drainage loads were calculated based on worst observed chemistry and average flow rates into seepage collection pond
- Loads from kinetic tests were then normalized to mine drainage loads to obtain *exceedance factor*
 - Inverse of empirical bulk scaling factor

Site A – exceedance factors

Lorax Environmental Services Ltd.

www.lorax.ca

Site A – concentrations

- Concentrations in leachates from Sulphide field bins are in the range of waste dump drainage for the initial sampling cycle (pH>3)
- Arsenic is generally higher in all field bin leachates → different redox conditions and attenuation mechanisms in dump?
- Data shows signature of both Oxide and Sulphide waste rock on drainage chemistry

Site B – geology

- Porphyry-copper deposit hosted in a primarily mafic volcanic complex comprising volcanic and plutonic rocks
- Excess neutralization is available and all mine rock storage facilities have released neutral drainage for ~20 years
- Pyrite is the main sulphide mineral observed; minor Cu-sulphides

Site B – loading assumptions

- Waste material (mostly diorite) backfilled into open pit
- Water samples were collected from monitoring wells at ~17 and 40m below the waste rock surface
 - Water table at around 12m below surface
- Infiltration was used for flow calculations
- Only rock mass in unsaturated zone was considered for loading calculations

Site B – exceedance factors

 Difference in Al and Fe exceedance factors between humidity cells and columns shows that solubility controls become important at small scales

Site B – concentrations

- Concentrations in field bin leachates are generally within the same order of magnitude as waste dump drainage
- Geochemistry in both monitoring wells is relatively consistent suggesting that either:
 - Equilibrium conditions have been reached at shallow depths
 - Degree of waste dump saturation is sufficient to inhibit oxidation of rock

Conclusions

- Bulk scaling factors were calculated to generally fall below 1% at the study sites (semi-arid conditions)
 - ranging from 0.002 to 0.17% (median = 0.03%) in acidic drainage and 0.00023% to 4% (median = 0.13%) in neutral drainage
- These values are generally lower than previously reported in similar studies;
- For both sites, several species appear to be solubility-controlled at relatively small scales (field bin ~200 kg);
- An openly available database compiling empirically-derived bulk scaling factors would increase the confidence in upscaling exercises used for drainage chemistry prediction modelling.