Progress on Translating ("Scaling") Laboratory Weathering Tests on Mine Wastes to Full Scale Facilities

Stephen Day, Kelly Sexsmith and Shannon Shaw

BC MEND Workshop, December 3, 2014

Acknowledgements

- Avanti Kitsault Mine
- Cameco Corporation
- Teck
- Thompson Creek Mining
- Walter Energy
- Yellowhead Mining
- Our colleagues

What We'll Cover

- What do we mean by scaling?
- Overview of weathering and leaching.
- Scaling of weathering rates.
- Scaling of leaching processes.
- Observations of scaling.

Why does this matter?

- Laboratory test results are used to make water chemistry predictions
- Predictions are used as inputs into downstream water quality assessments.
- Water chemistry predictions are also used to make mine design decisions
 - Under- or over-prediction can be costly.

What Do We Mean By Scaling?

10⁻⁶ kg grains

Static tests

10⁻³ kg sample

0.1 kg sample

oampio ____

1 kg sample

Kinetic Tests

Measurements

Scaling?

Predictions (Forecasts) of water chemistry

Full Scale 10¹² kg dump

Overview of weathering and leaching – example, pyrite (FeS₂) oxidation

Dissolved Weathering Products (e.g. SO₄, Fe, H⁺, trace elements)

Processes Requiring Scaling

- Rate of conversion of primary minerals to weathering products
- Leaching processes
 - Solubility of weathering products.
 - Leaching efficiency.

Scaling of Weathering Rates (eg mg/kg/time step)

Kinetic Tests

1 kg sample

Temperature $\uparrow\downarrow\leftrightarrow$ $pH\uparrow\downarrow\leftrightarrow$ $O_2\downarrow$ Bacteria \leftrightarrow Encapsulation Effects \uparrow Mineral Liberation \downarrow $CO_2\uparrow$ $H_2O\leftrightarrow$

Particle Size ↑

Legend:

Arrows show direction of change between scales For example, particles are larger (↑) at full scale

srk consulting

Full Scale

10¹² kg dump

Scaling of Weathering Rates

- General expectation is that in most settings, weathering <u>rates</u> are <u>lower</u> under site conditions due to:
 - Coarser materials.
 - Lower availability of oxygen.
 - Lower temperatures (for Canada at least)

- Predictions based on:
 - Rate_{site} = Rate_{lab} x f_{particle size} x f_{O2} x f_{temperature}

Scaling of Leaching Processes

Kinetic Tests

1 kg sample

Liquid-to-solid ratio (L/kg) \downarrow Leachate Contact Time \uparrow $CO_2\uparrow$ Temperature $\uparrow\downarrow\leftrightarrow$ Coarse Particles \uparrow Mineral Exposure \downarrow O_2 (redox sensitive parameters) $\downarrow\leftrightarrow\uparrow$

Contact Ratios:

Kinetic tests – 10⁰ L/kg Full Scale – 10⁻³ L/kg Full Scale 10¹² kg dump

Scaling of Leaching Processes

- Lower liquid-to-solid ratios under site conditions are a primary consideration:
 - Typically expect measured concentrations [C] to be <u>higher</u> under site conditions but not exclusively.
- Higher CO₂ may also be important
 - Lowers pH which affects solubility

Scaling of Leaching Processes

- Therefore, [C]_{Site, Measured} > [C]_{lab, measured}.
 - [C] generally increases as liquid-to-solid ratio decreases.
- If we combine rate and leach ratio scaling:
 - [C]_{Site, Predicted} > [C]_{Site, Measured}
- Why?
 - Due to secondary mineral solubility limits.
 - Kinetics of solubility

- Sites with comprehensive monitoring data and kinetic tests at different scales now allow evaluation of scaling effects.
- Challenging to separate weathering rates and leaching processes due to linkages.
- Evaluation of weathering rate scaling is typically done with sulphate because it is:
 - Linked to sulphide oxidation.
 - Readily leached.
 - Solubility controls are well understood.

 Waste rock weathering rate (R) scaling for sulphate.

Company	Deposit Type	R _{lab} Basis	R _{site} Basis	R _{site} /R _{lab}
Teck, Walter Energy	Open pit coal	Humidity cells	Full Scale	0.01 to 0.03
Avanti Kitsault, Thompson Creek (Endako)	Molybdenum porphyries	Humidity cells	Full Scale	0.04 to 0.1
Yellowhead Mining (Harper Creek)	Volcanogenic sulphide	Humidity cells	Barrels	0.2
Cameco (Rabbit Lake B-Zone)	Unconformity- associated uranium	Humidity cells	Full scale	0.02
Closed site	Sedex	Humidity cells	Full scale	0.02

 Leaching Scaling – comparison of concentrations at different scales of testing

Coal mine waste rock, 0.1% total sulfur, basic drainage.

Humidity cell detail

Coal mine waste rock, 0.1% total sulfur, basic drainage.

 Leaching Scaling – comparison of concentrations at different scales of testing

Harper Creek Project

Column run at low liquid-to-solid to match barrel

P:\01_SITES\Harper_Creek\1CY003.001_MLARD_Feasability&EA\800_On_Site_Kinetic_Testing\[1CY00.00

Coal mine waste rock, 0.1% total sulfur, basic drainage.

P:\02 MULTI SITES\Elk Valley Coal Corp\1CE003.001 Selenium Geochemistry\Selenium Release Model\2012-06 Loading Empirical Report\Other Element Scaling\11CE003.001 Compiled Results SJD Id 20110221 VER02.xlsx\1

Conclusions

- Laboratory test data cannot be used directly without considering factors affecting weathering rates and leaching processes.
- Growing body of site data shows that:
 - A site-specific approach is always needed.
 - Weathering rates are often lower under site conditions than shown in laboratory tests.
 - Concentrations from laboratory scale tests must be evaluated for effects of liquid-to-solid ratios and weathering mineral solubility.