Progress on Translating ("Scaling") Laboratory Weathering Tests on Mine Wastes to Full Scale Facilities Stephen Day, Kelly Sexsmith and Shannon Shaw BC MEND Workshop, December 3, 2014 #### Acknowledgements - Avanti Kitsault Mine - Cameco Corporation - Teck - Thompson Creek Mining - Walter Energy - Yellowhead Mining - Our colleagues #### What We'll Cover - What do we mean by scaling? - Overview of weathering and leaching. - Scaling of weathering rates. - Scaling of leaching processes. - Observations of scaling. #### Why does this matter? - Laboratory test results are used to make water chemistry predictions - Predictions are used as inputs into downstream water quality assessments. - Water chemistry predictions are also used to make mine design decisions - Under- or over-prediction can be costly. ## What Do We Mean By Scaling? 10⁻⁶ kg grains Static tests 10⁻³ kg sample 0.1 kg sample oampio ____ 1 kg sample **Kinetic Tests** #### Measurements # Scaling? Predictions (Forecasts) of water chemistry Full Scale 10¹² kg dump # Overview of weathering and leaching – example, pyrite (FeS₂) oxidation Dissolved Weathering Products (e.g. SO₄, Fe, H⁺, trace elements) # **Processes Requiring Scaling** - Rate of conversion of primary minerals to weathering products - Leaching processes - Solubility of weathering products. - Leaching efficiency. # Scaling of Weathering Rates (eg mg/kg/time step) Kinetic Tests 1 kg sample Temperature $\uparrow\downarrow\leftrightarrow$ $pH\uparrow\downarrow\leftrightarrow$ $O_2\downarrow$ Bacteria \leftrightarrow Encapsulation Effects \uparrow Mineral Liberation \downarrow $CO_2\uparrow$ $H_2O\leftrightarrow$ Particle Size ↑ #### Legend: Arrows show direction of change between scales For example, particles are larger (↑) at full scale **srk** consulting Full Scale 10¹² kg dump #### Scaling of Weathering Rates - General expectation is that in most settings, weathering <u>rates</u> are <u>lower</u> under site conditions due to: - Coarser materials. - Lower availability of oxygen. - Lower temperatures (for Canada at least) - Predictions based on: - Rate_{site} = Rate_{lab} x f_{particle size} x f_{O2} x f_{temperature} ## Scaling of Leaching Processes **Kinetic Tests** 1 kg sample Liquid-to-solid ratio (L/kg) \downarrow Leachate Contact Time \uparrow $CO_2\uparrow$ Temperature $\uparrow\downarrow\leftrightarrow$ Coarse Particles \uparrow Mineral Exposure \downarrow O_2 (redox sensitive parameters) $\downarrow\leftrightarrow\uparrow$ #### **Contact Ratios:** Kinetic tests – 10⁰ L/kg Full Scale – 10⁻³ L/kg Full Scale 10¹² kg dump #### Scaling of Leaching Processes - Lower liquid-to-solid ratios under site conditions are a primary consideration: - Typically expect measured concentrations [C] to be <u>higher</u> under site conditions but not exclusively. - Higher CO₂ may also be important - Lowers pH which affects solubility #### Scaling of Leaching Processes - Therefore, [C]_{Site, Measured} > [C]_{lab, measured}. - [C] generally increases as liquid-to-solid ratio decreases. - If we combine rate and leach ratio scaling: - [C]_{Site, Predicted} > [C]_{Site, Measured} - Why? - Due to secondary mineral solubility limits. - Kinetics of solubility - Sites with comprehensive monitoring data and kinetic tests at different scales now allow evaluation of scaling effects. - Challenging to separate weathering rates and leaching processes due to linkages. - Evaluation of weathering rate scaling is typically done with sulphate because it is: - Linked to sulphide oxidation. - Readily leached. - Solubility controls are well understood. Waste rock weathering rate (R) scaling for sulphate. | Company | Deposit Type | R _{lab} Basis | R _{site}
Basis | R _{site} /R _{lab} | |--|-------------------------------------|------------------------|----------------------------|-------------------------------------| | Teck, Walter
Energy | Open pit coal | Humidity cells | Full Scale | 0.01 to
0.03 | | Avanti Kitsault,
Thompson Creek
(Endako) | Molybdenum
porphyries | Humidity cells | Full Scale | 0.04 to 0.1 | | Yellowhead Mining (Harper Creek) | Volcanogenic sulphide | Humidity cells | Barrels | 0.2 | | Cameco (Rabbit
Lake B-Zone) | Unconformity-
associated uranium | Humidity cells | Full scale | 0.02 | | Closed site | Sedex | Humidity cells | Full scale | 0.02 | Leaching Scaling – comparison of concentrations at different scales of testing Coal mine waste rock, 0.1% total sulfur, basic drainage. Humidity cell detail Coal mine waste rock, 0.1% total sulfur, basic drainage. Leaching Scaling – comparison of concentrations at different scales of testing Harper Creek Project Column run at low liquid-to-solid to match barrel P:\01_SITES\Harper_Creek\1CY003.001_MLARD_Feasability&EA\800_On_Site_Kinetic_Testing\[1CY00.00 Coal mine waste rock, 0.1% total sulfur, basic drainage. P:\02 MULTI SITES\Elk Valley Coal Corp\1CE003.001 Selenium Geochemistry\Selenium Release Model\2012-06 Loading Empirical Report\Other Element Scaling\11CE003.001 Compiled Results SJD Id 20110221 VER02.xlsx\1 #### Conclusions - Laboratory test data cannot be used directly without considering factors affecting weathering rates and leaching processes. - Growing body of site data shows that: - A site-specific approach is always needed. - Weathering rates are often lower under site conditions than shown in laboratory tests. - Concentrations from laboratory scale tests must be evaluated for effects of liquid-to-solid ratios and weathering mineral solubility.