Structural and Hydrologic Characterization of Two Historic Waste Rock Piles at Detour Lake Mine

Aileen Cash, G.W. Wilson, D.W. Blowes, R.T. Amos, B. McNeill, J. Robertson

2014 ML/ARD Workshop

Sulfide Oxidation in Waste Rock

Sulfide Oxidation in Waste Rock

Detour Lake Historic Waste Rock Piles

- Four historic waste rock piles on site:
 - 16 year operating history and 10 year post-closure history
- Two of four stockpiles were selected to analyze physical properties of historic waste rock under site conditions

Study Components

- Oxidation Products
- Gas transport

Waste Rock Excavation Goal and Objectives

Evaluate the geotechnical properties and hydrologic behaviour of Detour historic waste rock under site conditions

Objectives:

- 1. Conduct a field and laboratory program evaluate structural characteristics
- 2. Collect a sample inventory for detailed testing
- 3. Assess unsaturated soil properties of matric material
- 4. Evaluate volume of matric material and available water to assess flow characteristics

Research Program

- Two phase study:
 - Field Investigation
 - Representative sampling
 - Temperature profile
 - Matric suction measurements
 - Rock type identification, sulfides
 - Laboratory and Desktop Study:
 - Particle size distribution
 - Paste pH
 - Munsell soil colour
 - Moisture content
 - Saturated hydraulic conductivity
 - Soil-water characteristic curves (SWCC)
 - Digital Image Processing (DIP) techniques

Test Pit Sampling Program

Profile Sampling Program

-D Waste Rock Characterization Project

Interior Pile Structure

Field Program Results

- Structural features indicate the piles were likely a push or paddock dump with multiple benches of 10 15m
 - Typical features included traffic surfaces, angle of repose layering and coarse rubble zones at the base of benches
- Primarily clast supported structure, indicating pile behaves as a rocklike material
- Weathering was found throughout the waste rock to varying degrees
- Tensiometer matric suction:
 - Cover material 10 to 50 kPa
 - Waste rock fines 1 to 30 kPa
- Gravimetric Moisture contents: Between 3 wt% and 6 wt%

Geochemical Setting

- Samples from WRS 1 and WRS 2:
 - Average carbon/sulfur of waste rock: 0.59/1.2 %
 - 56% of samples classified as PAG (Detour cutoff for PAG 1:1.5)
- Instrumented Piles (WRS 3, WRS 4)
 - Porewater geochemistry near neutral (pH 7-8),
 Eh = 200-400 mV, elevated sulfate
 - Sulfide oxidation is ongoing, acidic drainage has not set in

Research Program

• Two phase study:

- Field Investigation
 - Representative sampling
 - Temperature profile
 - Matric suction measurements
 - Rock type identification, sulfides
- Laboratory and Desktop Study:
 - Particle size distribution
 - Paste pH
 - Munsell soil colour
 - Moisture content
 - Saturated hydraulic conductivity
 - Soil-water characteristic curves (SWCC)
 - Digital Image Processing (DIP) techniques

Matric Flow Estimation and Residence Time

• Determining matric flow in the waste rock using a basic conceptual model:

Assume water flow only occurs in <4.75 mm material

Utilize a Representative Elemental
 Volume (REV) of 1 m³ to create a
 conceptual model for flow

N DE

Estimate the proportion of matric material present utilizing DIP grain size data

Range of volumetric moisture contents (θ_w) for matric material - SWCC data,

-Tensiometer matric suctions

Determine the volume of water within the (REV) as a height of water

Steady state conditions and plug flow (Δ S=0), and flux equal to the average annual rainfall

Determine the residence time for the REV

DETOUR GOLD

Waste Rock Characterization Project

-P Waste Rock Characterization Project

Digital Image Processing

N DE

Estimate the proportion of matric material present utilizing DIP grain size data

Range of volumetric moisture contents (θ_w) for matric material - SWCC data,

-Tensiometer matric suctions

Determine the volume of water within the (REV) as a height of water

Steady state conditions and plug flow (Δ S=0), and flux equal to the average annual rainfall

Determine the residence time for the REV

DETOUR GOLD

Water Content and Residence Time

	Residence Time for 1D flow in REV for Varying Percent of Total Infiltration (880 mm/yr)			
	100%	50%	25%	10%
1D flow in REV (days)	10	20	40	100
20 m waste rock pile (years)	0.55	1.1	2.2	5.5

• Conceptual model provides an estimate of residence time between 0.5 to 5.5 years for 20 m waste pile

Summary and Conclusions (1/2)

- After a 26 year history, evidence of oxidation throughout the entirety of the stockpiles
 - The degree of weathering and oxidation is varied
 - The cover has not prevented oxidation, but may limit advective gas transport into the waste pile
 - Sulfide oxidation is ongoing, acid drainage has not set in more geochemical results to come
- Evidence of segregation of material and structure consistent with push dump construction techniques

Summary and Conclusions (2/2)

 Detailed laboratory testing determined SWCCs and full grain size curve using DIP techniques

- Developed framework for understanding matric flow
 - Fluid flow occurs in matric fines <4.75 mm in unsaturated conditions
- Residence times ranged from 0.6 to 5.5 years for 20 m pile, expected in the range of 1.1 to 2.2 years

Questions and Discussion

Acknowledgements:

Jim Robertson Marie-Hélène Turgeon Environmental Department

Dr. Ward Wilson Dr. Louis Kabwe Pablo Urrutia

Dr. David Blowes Dr. Richard Amos Jeff Bain Brayden McNeill Adam Lentz

DOOSAN