

ARSENIC TRIOXIDE MANAGEMENT

Michael Nahir, AANDC Daryl Hockley, Peter Mikes, SRK MEND Workshop, December 3-4, 2014

- Overview of presentation
 - 1. Project Background
 - 2. Containment of Arsenic Trioxide using Frozen Blocks
 - 3. Optimization Study
 - 4. Findings and implications for full-scale design

1. BACKGROUND

- Arsenic trioxide dust
 - 237,000 tonnes of arsenic trioxide dust
 - 14 underground chambers and stopes
 - Initially a dry powder
 - Like fine flour
 - 60% arsenic
 - Dissolves in water up to 9,000 mg/L

• Arsenic trioxide dust chambers and stopes

KA1 This slide looks very odd - perhaps something more is coming Krista Amey, 8/24/2012

Canada

- Currently completely contained
 - Any water that leaves the mine is treated to remove arsenic

Janad

2. FROZEN BLOCKS

3. FREEZE OPTIMIZATION STUDY

- Study Objectives
 - Demonstrate to the public that ground freezing works
 - Inform further engineering design
 - Model calibration Material properties, heat removal rates, etc.
 - Test implementation methods
 - Develop data handling methods
 - Develop insights into project procurement
 - Examine unknown unknowns

3. FREEZE OPTIMIZATION STUDY

- Three main freeze technologies:
 - Active Freezing,
 - Passive Freezing (thermosyphons), and
 - Hybrid freezing systems.

- 4.5" freeze pipe;
- 3.0" freeze pipe
- Parallel connection between pipes;
- Serial connection between pipes.

Canada

Passive Thermosyphons

- 4.0" pipe diameter

- 3.0" pipe diameter
- 2.5" pipe diameter

4.0" pipe diameter
 3.0" pipe diameter
 2.5" pipe diameter

• Drilling freeze holes

• Installing freeze pipes

• Installing thermosyphons

• Freeze plant

Northwest Territories Canada

• Coolant distribution piping

Same tunnel in
 September 2011

Underground tunnel below Chamber 10 in March 2011

4. FOS FINDINGS

- Calibration of thermal model parameters
 - Bedrock and dust thermal properties
 - Boundary conditions (climate, ground surface geothermal gradient)
 - Efficiencies of the freeze systems
 - Heat transfer efficiency
 - Plant and instrumentation reliability
- Design optimizations (drilling method, pipe diameters, and pipe layout)
- Trade-off studies

- Severe climate warming (+6°C increase to the mean air temperature)
- Passive freezing (thermosyphons) only
- Thermosyphons maintain the frozen block
- Ground surface gets quite warm in summer
- Dust remains at -5C

Sensitivity of initial freezing times to design choices

- Time to complete frozen wall
- -10°C or colder
- 10 m wide

- Evaluations of significant design choices
 - Wet vs. dry frozen blocks
 - Freezing from surface & underground vs. surface only
 - Freezing rate
 - Methods of active to passive conversion
 - Active vs. hybrid vs. passive
 - Surface amendments/treatments

Trade-Off Study #1 - Wet vs Dry Frozen Blocks

- Wet Frozen Block Method:
 - Ground around each chamber is cooled until a -10°C 10m thick freeze wall is established
 - Arsenic dust is wetted
 - Active freezing continues until the dust reaches -5°C
 - Freeze pipes are converted to passive thermosyphons
- Dry Frozen Block Method:
 - Same as above except the wetting step is omitted

Trade-Off Study #1 - Wet vs Dry Frozen Blocks

- Dry frozen block freezes 3-7 years faster
- Dry cost \$23.1 million less than wet

all areas of the dust have reached -5°C (completion of active freeze period)

Trade-Off Study #2 – Surface & Underground Freezing Vs. Surface Freezing Only

- Surface and Underground Freezing:
 - Vertical freeze pipes extend 10 m beyond dust
 - Horizontal freeze pipes below chambers
 - Requires underground development
- Surface Only Freezing:
 - Vertical freeze pipes extend 20 m beyond dust
 - No horizontal freeze pipes

Canada

Other Trade-Off Study Results

Study Name	Description / Outcome
Method of conversion from active freezing to passive freezing	 Insert a new thermosyphon pipe inside each freeze pipe. Clean each freeze pipe and attach a thermosyphon radiator on top of each pipe. Option 1 is less complex, proven, and less costly.
Hybrid freezing rate of cooling	 Study compared life cycle costs for two types of hybrid thermosyphon units No significant difference
Active freezing vs. hybrid thermosyphon vs. freezing vs. passive thermosyphon freezing	 Full scale design will use a combination of freeze technologies. Larger chambers will require active freezing to minimize the overall freeze durations. Some of the smaller chambers can be frozen passively in the same time as the larger chambers are frozen actively.
Surface Amendments	 Evaluated potential for fill or additional thermosyphons to be placed at surface in order to reduce the amount of pipes around the perimeter of the dust. Shallow thermosyphons installed directly over the dust found to be most effective.

- Dry frozen blocks
- Freezing from surface only
- Larger chambers and stopes actively frozen
- Smaller chambers passively frozen

Thank-you for your attention

