Geochemical Characterization of Spilled Tailings from the Mount Polley Mine Dam Failure

Chris Kennedy, SRK
Stephen Day, SRK
‘Lyn Anglin, Imperial Metals

December 2, 2015
Acknowledgements

• This was a team effort…

• Colleen Hughes and the team at Mount Polley Mining Corporation

• SNC-Lavalin – Hazeltine Creek field sampling
  • Dan Schneider
  • Trevor McConkey

• Minnow Environmental – lake sediment sampling
  • Pierre Stecko

• Golder Associates – overall coordination
  • Lee Nikl
Presentation Overview

1. Purpose of the study
2. Site geology and operational history
3. Sampling and analysis plan
4. Results
5. Discussion
6. On-going studies
1. Study Purpose & Approach

- As most are aware, the Mount Polley Mine (MPM) tailings dam failed on August 4, 2014 and tailings were released.
1. Study Purpose & Approach

MPM Location: 55 km north-east of Williams Lake, BC
1. Study Purpose & Approach

Source: Golder (2015)
1. Study Purpose & Approach

• Tailings were spilled along the banks and stream bed of Hazeltine Creek, Polley Lake, and Quesnel Lake.

• As part of remedial efforts by Imperial Metals Corporation, the metal leaching and acid rock drainage (ML/ARD) potential of the spilled tailings were assessed.
1. Study Purpose & Approach

- This presentation is a ‘highlights reel’ of publicly available report:

1. Study Purpose & Approach

The study approach included the following components:

- Review existing data – site geology, operational history, etc.
- Develop geochemical conceptual model to guide sampling
- Develop and carry-out sampling and analysis plan
2. Site Geology and Operational History

- The MP deposit is classified as an alkalic copper gold porphyry (BC MINFILE No. 093A 008)

- The Mount Polley deposit is hosted within the Polley Stock that intrudes the Nicola Group volcanic rocks. It is variably altered and brecciated.

- The host rocks vary in composition from diorite to syenite (including monzodiorite, monzonite)
2. Site Geology and Operational History

- Rocks are composed primarily of plagioclase and alkali feldspar, with pyroxene, biotite and magnetite, and lesser garnet, epidote, calcite and chlorite. These rocks contain very little quartz.

- The main sulphide minerals are chalcopyrite ($\text{CuFeS}_2$) and pyrite ($\text{FeS}_2$)

- The main carbonate is calcite ($\text{CaCO}_3$), malachite ($\text{Cu}_2\text{CO}_3(\text{OH})_2$) is also present

- A significant portion of the copper in the ore (i.e. upwards of 50%) is associated with a non-sulphide form near the surface.
2. Site Geology and Operational History

- Mine started operations in 1997, with a 5-year shut down in 2001 to 2005 due to low metal prices

- The main product is a copper sulphide concentrate
  - As a result, tailings are relatively depleted in sulphide minerals compared to ore

- Tailings deposition in the TSF included rotation of the discharge location along the embankments
3. Sampling and Analysis Plan

Conceptual Geochemical Model:

- Low ARD potential expected for tailings due to relatively low sulphide content of ore and recovery of copper sulphide

- ML potential indicated by presence of sulphide and other copper bearing minerals.
3. Sampling and Analysis Plan

• Conceptual model developed indicated that sampling needed to consider sub-aerial and sub-aqueous tailings
  • Oxidation of sulphides in sub-aerial tailings
  • Potential for subaqueous dissolution of secondary minerals due to low oxygen conditions (i.e. reductive dissolution)
3. Sampling and Analysis Plan

Sampling Methods

• Subaerial tailings – 18 transects along Hazeltine Creek with 68 samples in total
• Lake tailings – 78 sample from Polley and Quesnel

Analytical methods

• ML/ARD potential – mineralogy, acid-base accounting, metal analysis
• Trace element occurrence – sequential extractions
• Reactivity – kinetic tests (on-going)
3. Sampling and Analysis Plan
4. Results – Field Sampling

Grey tailings

Magnetite sands

grey layer of fine material
red layer of sandy material
topsoil
4. Results – Laboratory Analysis
4. Results – Laboratory Analysis

Enrichment Ratio [concentration sample/concentration basalt]

Element

Enriched

Depleted

Z:\01_SITES\Mt_Polley\1CI008.003_Privileged_and_Confidential\500_Reportings\Interpretations\Geochemistry\Hzltn_Crk_2014\[MtPolley_HzltnCrk_2014_1CI008.003_REV.xlsx]
4. Results – Laboratory Analysis

- Copper and selenium concentrations were compared to operational tailings and background sediments

  - Copper
    - Spilled tailings slightly lower than operational samples, but higher than regional sediments

  - Selenium
    - Spilled tailings were slightly higher than operational samples likely due to influence of relatively high background concentrations
4. Results – Laboratory Analysis

- Sampling captured range reported in mill tailings

- Based on comparisons, good evidence that tailings collected were a mixture of tailings and native sediments
4. Results – Laboratory Analysis

Mineralogy – main findings:

- Sulphides: pyrite and chalcopyrite
- Carbonates: calcite
- Iron oxides: magnetite
- Copper ‘deportment’: non-sulphide copper – likely chlorite (see next slide)
- Quartz: high in some samples (greater than 5%) and representative of mixing with native sediments
4. Results – Laboratory Analysis

- Copper deportment as expected in sulphides, but chlorite also shown to be significant host.
- Selenium concentrations too low for deportment analysis.

![Normalized Copper Deportment Graph]

- Grey Tailings
  - Fe Ox_Silicate_low Cu
  - Chlorite
  - Chalcocite/Covellite
  - Bornite
  - Chalcopyrite

- Magnetite Sand
  - Fe Ox_Silicate_low Cu
  - Chlorite
  - Chalcocite/Covellite
  - Bornite
  - Chalcopyrite
4. Results – Laboratory Analysis

Sequential extractions to identify mineral ‘host’:

- Main findings were that copper and selenium were in mineral phases not susceptible to remobilization under sub-oxic conditions.

- Iron oxides present in the tailings were not easily reducible, which is attributed to the stability of magnetite ($\text{Fe}_3\text{O}_4$).
5. Discussion

Main findings from study:

• ARD is not expected and leaching will be under pH basic conditions – this will result in low metal solubility

• Copper and selenium were the main elements identified as leaching concerns compared to crustal averages

• Sub-aerial oxidation of sulphides will release copper and selenium, BUT…
  • Copper solubility will be limited at basic pH
  • Not all copper is associated with sulphides
5. Discussion

Main findings from study (continued):

- Selenium is soluble at basic pH, but site specific considerations are important
  - Dilution – most of the tailings are present in thin layers
  - Background sediment concentrations are similar and often higher than tailings

- Water submergence of tailings will inhibit sulphide oxidation and non-sulphide minerals are not expected to dissolve under sub-oxic conditions

- The tailings are likely mixtures of true tailings and natural sediments (e.g. lower copper and higher selenium)
6. On-going Studies

• Non-sulphide copper analysis
  • How much copper and other elements are associated with ‘non-reactive’ phase?

• Kinetic testing
  • Establishing leaching rates
Thanks for listening…

• Any questions?