Quantitatively Assessing the Benefits of Managing Gas Entry into Waste Rock Dumps During Placement to Reduce Long-Term ML-ARD Risk

Steven Pearce, O’Kane Consultants
Andrew Baisley, O’Kane Consultants
Mike O’Kane, O’Kane Consultants

MEND 2016
Cost benefit of placing waste differently

- Demonstrate Economic Benefit for mine planners
- Demonstrate to regulators performance without a cover system
Cost benefit of placing waste

We need to change the question
The million $ problem

Message:
- not that placement method (and thus gas flux) has significant control on ML-ARD (we already know it does)... But...

Require a cost effective site specific assessment approach:
- Where risk/cost tradeoff assessment of how WRDs are constructed can be completed at the mine planning stage and closure cost estimation can be improved significantly.
- A relative difference can be quantified
- Decisions can be made on a site specific basis
“Standard approach”

- LAB
- Modelling
- Scaling factor
- 10+ years
- Field
How do lab tests incorporate site specific factors?

1) Climate

2) Geochemistry

3) Physical Characteristics

4) Structure of WRD due to Placement Method

5) Closure Measures (covers, treatment, etc.)
Why site conditions matter

- Reaction rates are controlled by oxygen supply, gas flux is therefore more important than sulfur grade or lab derived “kinetic pyrite oxidation rate”
- Concentration is controlled by liquid solid ratio, seepage rate is therefore more important than “leach test results”

Because the dynamic flux of oxygen and seepage is site specific, we need a site specific assessment method to define risk
Guidance does not “endorse” standard methods

Laboratory test results will be empowered where it can be shown that they are correlated with field rates, or that the test accurately simulates the rate and balances among important processes, such as oxidation, dissolution and entrainment. Where possible, the design of trickle leach tests should be modified to simulate key aspects of the weathering and leaching conditions, such as the redox potential, drainage pH and the leaching rate (m³/kg/yr) and residence time.

This quote from MEND, habitually ignored by nearly all AMD studies, does not endorse the use of standard methods.

Insanity: doing the same thing expecting a different result
First Principals Approach: Site specific “scaling” (not using an arbitrary factor)
What are the first principals?

Pyrite + Water + Air (oxygen) =
Sulfuric acid + metals + salinity

Diffusive gas flux

Water flux

Climate (temperature)

Particle size (dissolution rate, acid producing and buffering)

Sulfide content

IOR (intrinsic oxidation rate)

Adveective gas flux

Adveective vapour flux
Key is controlling air flux rates

Structure Effect on Air Flow

- Coarser
- Medium
- Finer

1 x $10^{-1} \text{ m}^3/\text{m}^2\text{s}$

- Lower
- Even Lower

1 x $10^{-4} \text{ m}^3/\text{m}^2\text{s}$

1 x $10^{-6} \text{ m}^3/\text{m}^2\text{s}$

Pearce et al 2015
Key is air permeability which depends on saturation state and “compaction”
Oxygen is not always a limiting factor.
Acidity generation as a function of material type

- **Acidity generation (kg H₂SO₄/d)**
 - Coarse
 - Loose fines
 - Paddock dump intermediate
 - Compacted fine

- **Saturation (VWC (m³/m³))**

- **Gas Flux Rate (m³/m²/s)**
 - Log scale from 10E-11 to 10E-02
 - Log scale from 10E00 to 10E+09

O’Kane Consultants
Integrated Mine Waste Management and Closure Services
Specialists in Geochemistry and Un saturated Zone Hydrology
Semi arid site setting, coarse “NAF” waste rock (0.3% S material) high gas flux low water flux
Low LS ratio concentrates solutions: In field acidity can be 100,000 mg/l+
Tropical site setting, fine texture waste rock (0.3% S material) low gas flux high water flux

Water flux (NP)

Sulfide oxidation production AMD load

Gas flux

AMD production

Seepage

Concentration

Time
Tropical (4m ppt yr) 2-3% sulfides (reactive), integrated waste rock and tailings facility, presence of finer textured materials (argillic volcanics)

HIGH RISK?
Climate + materials = low gas flux potential
Drilling into embankment (2016)
A Path Forward

● Alternative to managing these long-term risks “later” is by addressing the risk while the waste rock is being placed (“now”)
 — Still have control over how it is constructed, clean slate

● Leads to a more robust mine waste rock management approach.

● A complete description of the WRD assessment tool developed by OKC can be found Pearce et al., 2016
DumpSim Assessment Tool

- Based on thermodynamic and hydraulic principles that have been coupled.
- \(\text{Temp}_\text{in} = \text{Temp}_\text{ext}, \text{ else } \text{Int}_\text{heat} \)
- \(\text{Int}_\text{heat} \propto c_{th} \text{ and } H_E \text{ from POR/COR} \) (both estimated accurately)
- Reaction kinetics and heat transfer \(\propto \text{Air Flux} \)
- DumpSim uses unsaturated zone hydrology to link the rate of reactions (POR/COR) with thermodynamics to determine heat flux and transfer.
- Incorporates critical water content limitations to reaction rates (validated by field + lab data)
- Gas flux is a main driver.
Design and assess placement method to mitigate gas/temperature risks.

Paddock dumping Class 3
NAF as cover

Must be covered within 2 months

Direction of tip head progression

Toe Bunds - Plan View

Paddock dumping surface dozed flat
Paddock dumping - tip head must be covered within 2 months
Tip Heads may extend from different points

Toe bunds constructed < 2X from previous.
For example: 30 m lift height = < 60 m between toe bunds
Multi criteria assessment of AMD load based on placement method

Comparison of dumping technique

- **Paddock dump**
- **10m end tip modified method**
- **End tipping**

Comparison of dumping technique

<table>
<thead>
<tr>
<th>% saturation</th>
<th>Diffusion</th>
<th>Advection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>0.8</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>0.9</td>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

H₂SO₄ t/d
● Allows a **risk-weighted cost-benefit analysis** of construction methods over life of mine to assess closure scenarios and the requirement for closure mitigation measures such as cover systems.

● **Allows optimized management of material** for example paddock dumping may be too costly for all materials, but a sulphur grade cut-off can be established such that the material with high acidity and/or temperature risks could be **selectively managed** in this manner.

● Identifies direct **link** between construction methods and the potential development of ML/ARD risks and impacts.

● **Allows assessment** of the benefit of progressive ML/ARD management as compared to deferring to final closure solutions…

And, in the case of cover systems:

So we understand what the cover system can realistically achieve
There is a **Need** for…

Quantitative Assessment Tools

...To properly evaluate the economic and environmental risks of different ML/ARD mitigation measures... one that may not include a cover system
O’Kane Consultants
Rainbow of Hope for Children

Habitat for Humanity Initiative

O’Kane Consultants are Proud Supporters of the:

The University of Saskatchewan Global Institute for Water Security

Mine Overlay Site Testing Facility (MOST)