Voisey’s Bay Nickel Mine:
A unique approach to mine rock management in the 1990s with a follow-up assessment in 2017

Ron Nicholson, Sarah Barabash, Daniel Skruch, Derek Amores, *EcoMetrix Incorporated*

Erin Cullen and Perry Blanchard,
Vale Newfoundland and Labrador (VNL)

W.A. Napier
Argonaut Gold
The Players

• INCO acquire Voisey’ Bay deposit in 1996 for $4.3B

• INCO’s Voisey’s Bay Nickel Company (VBNC)

• Vale acquires INCO in 2006 and operates the Voisey’s Bay mine
The Context

• Discovery of 32 Mt Ovoid Massive Sulphide Ni-Cu deposit
• Identification of significant underground resource
• EIS completed between 1996 – 1999 with a Mine Rock Management plan
 – Using PAG identification of 0.2%S or greater
• Project on hold for due to incomplete negotiation with stakeholders
• Negotiations with stakeholders on necessary agreements concluded in 2002
• Started Mining the Ovoid (open pit) in 2005
 • 0.2%S used in start of operation from 2005 to present
• 2016 Plans expansion to mine underground
• Request from regulator to review mine rock management criteria and plans
The EIS (1996-99)

- Recognized early that this deposit is sulphide rich and appropriate waste rock management will be required

- Need to identify:
 - non-reactive mine rock that can safely be deposited on-land, and;
 - potentially reactive mine rock that should be stored underwater as a mitigative measure

- All tailings to be stored underwater (PAG)
Precautionary Principle

- Adopted a precautionary principle regarding PAG rock:

 Assume all mine rock is potentially reactive until proven otherwise
1996-1997 Test Program

- Extensive analyses and testing provided confidence
- Static Tests - more than 500 analyses for:
 - Metal Content
 - Acid Base Accounting (ABA-includes Sulphur)
- Kinetic tests (assess reactivity)
 - 22 Humidity Cells / 18 Column tests
 - 58 Oxygen Consumption Measurements
Mine Rock Investigation
Flow Chart

Phase I

Chemical and Mineralogical Characterization

Ovoid
Western Extension
Overburden

No Sulphide

Phase II

Kinetic Tests

Underground
Open Pit

Reactive
Not Reactive

Underwater
On Land
Summary of Key Results (1997 EIS)

- Relatively simple geology with two main types of mine rock that are easy to recognize
 - Low-Sulphur “Gneiss” (light colored)
 - Sulphur-bearing “Intrusive” (dark colored)

- Sulphur content is the KEY indicator of available metals and of reactivity
Frequency Analysis of Sulphur in Gneiss

Number of Gneiss Samples

Sulphur %

B.C. ARD Cutoff
Frequency Analysis of Sulphur in Intrusive Rock

Number of Intrusive Samples

Sulphur %

B.C. ARD Cutoff
NP/AP Ratio vs. Total Sulphur in Gneiss

Voisey’s Bay Proposed Cutoff

B.C. ARD Cutoff (Price, 1997)

NA/AP Ratio = 1
Conclusions of 1997 Study

• Overburden is non-reactive

• **Intrusive** rock is assumed to be reactive and all will be placed underwater

• The non-reactive **Gneiss** represents more than 90% of the mine rock from the open pit that can be safely deposited on-land
Conclusions of 1997 Study (cont.)

• Results show that a **0.2% sulphur content** is a conservative cut-off value to separate reactive and non-reactive mine rock.

• Segregation procedures and protocols based on sulphur content are practical and achievable during mining.
Recommendations of 1997 Study

- Humidity cells and columns continuing
- Underwater testing of:
 - Mine Rock
 - Tailings
 - Potential surface barriers
Current Operating Parameters

- Use of 0.2%S to identify non-PAG
- Assays blast holes and classify material prior to blasting
- Define non-PAG allowing 5 m buffer from 0.2%S zones
- All PAG material is placed sub-aqueously for final storage
- Non-PAG material to the CRD pile adjacent to the pit
- Approximately 10 Mt of non-PAG rock with an average of 0.06 %S in 2017
2016 Review of Mine Rock Management

- Development Plan for underground expansion submitted in 2015
- Request from regulator to review mine rock management criteria and plans
The 2016 Review

• Original document by BEAK (1997) and follow up studies
• Reviewed in the context of more recent guidance (Price, 2009; GARD Guide, 2009) and EXPERIENCE since 1997

• Found criteria of 0.2% is reasonable
• Questioned “effectiveness” of NP (Sobek) used in the assessment
• Suggested additional assessment of “effective” NP
The 2016 Review

• Sobek and Carbonate NP values available in the database

• New samples collected and characterized

• Effective NP assessed in the lab
Neutralization Potential Ratio (NPR)

- Effective NP likely between Sobek and Carbonate values
NP Concepts Overview

<table>
<thead>
<tr>
<th>NP Method</th>
<th>Method Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobek-NP</td>
<td>• Excess HCl addition (down to pH < 2.0), digestion & back-titration with NaOH to pH 8.3</td>
</tr>
<tr>
<td></td>
<td>• Includes carbonates & other potential buffers "outside" relevant environmental of pH < 6.0 (e.g. aluminosilicates); typically overestimate</td>
</tr>
<tr>
<td>Carbonate-NP</td>
<td>• Based on Inorganic Carbon analysis (as % CO$_2$) converted to (%CO$_3$) & Carbonate-NP; typically conservative</td>
</tr>
<tr>
<td>Assessing</td>
<td>Operationally, “readily available” NP able to maintain pH~ 6.0</td>
</tr>
<tr>
<td>“Effective-NP”</td>
<td>• Bracket an Eff-NP using two approaches</td>
</tr>
<tr>
<td></td>
<td>(1) Titrations with Acid</td>
</tr>
<tr>
<td></td>
<td>(2) Batch Phased Acid Additions</td>
</tr>
</tbody>
</table>
Recommendations from 2016 Review

- Asses effective NP “available” to maintain pH of 6.0 or greater
- Reassess cut-off criteria based on effective NP
- Test program initiated in 2016, using core samples and rock from open pit
Results 1: Titration-Effective NP

- Rates very slow – not practical to define an Eff-NP
- At 1200 h, sporadic pH increases occur (pH >6.0)
- Enderbite Titration NP at less than 15% Sobek-NP
Results 1: Titration-Effective NP

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>ABA Analysis</th>
<th>Titration Experiments</th>
<th>Titration Experiments</th>
<th>Total Experiment Time</th>
<th>pH Status From Last Acid Addition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carb-NP</td>
<td>Sobek NP (kg CaCO₃/t)</td>
<td>Titration Effective NP</td>
<td>*pH From Last Acid Addition</td>
<td>Last pH Reading</td>
</tr>
<tr>
<td></td>
<td>kg CaCO₃/t</td>
<td>%</td>
<td></td>
<td>Days</td>
<td></td>
</tr>
</tbody>
</table>

Enderbite	0.4	15	2.0	14	5.74	6.26
Enderbite	0.6	15	1.7	12	5.74	6.00
Enderbite	0.8	17	1.5	9	5.70	6.30
Enderbite	1.3	15	3.5	23	5.78	6.44
Paragneiss	1	6.3	2.2	35	5.86	6.18
Paragneiss	4.3	8.8	1.5	17	5.80	6.25
Paragneiss	0.5	7.9	3.3	41	5.85	6.30
Troctolite	0.4	24	3.1	13	5.83	6.26
Troctolite	2	25	1.9	8	5.76	5.89
Troctolite	2.6	22	3.2	15	5.78	6.26
Troctolite	0.8	29	2.7	9	5.85	6.11

*Last acid addition done within the last 400 hours (17 days)
Results 2: BPAA-Effective NP

- 2 phase Bulk Acid Additions
- Only able to recover (pH > 6.0) from 1st bulk acid addition; plateaued (pH < 6) after 800H
- \textit{Enderbite} pH vs. Time sample plot
Results 2: BPAA Eff-NP

- Batch Phased Acid Eff-NP (as % Sobek-NP)

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Sample Location</th>
<th>ABA Analysis</th>
<th>1st Phase Batch Acid Addition</th>
<th>2nd Phase Batch Acid Addition</th>
<th>Terminal pH (Within approx. last 200 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carb-NP</td>
<td>Sobek-NP</td>
<td>BPAA - ENP</td>
<td>Recovered to pH>6?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kg CaCO₃/t</td>
<td>kg CaCO₃/t</td>
<td>%</td>
<td>kg CaCO₃/t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDERBITE</td>
<td>SE Extension</td>
<td>0.4</td>
<td>15</td>
<td>4.8</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>15</td>
<td>4.8</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3</td>
<td>15</td>
<td>4.8</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>RB Ramp</td>
<td>0.8</td>
<td>12</td>
<td>4.6</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3</td>
<td>14</td>
<td>4.2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>ED Conveyor</td>
<td>0.8</td>
<td>17</td>
<td>4.8</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>17</td>
<td>6.0</td>
<td>36</td>
</tr>
<tr>
<td>PARAGNEISS</td>
<td>RB Ramp Churchill Province</td>
<td>4.3</td>
<td>9</td>
<td>2.4</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>8</td>
<td>2.4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1</td>
<td>6</td>
<td>2.4</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
<td>10</td>
<td>3.5</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>11</td>
<td>3.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1</td>
<td>12</td>
<td>4.7</td>
<td>39</td>
</tr>
<tr>
<td>TROCTOLITE</td>
<td>Reid Brook</td>
<td>1.6</td>
<td>43</td>
<td>9.7</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.9</td>
<td>25</td>
<td>6.9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td>22</td>
<td>5.8</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>SE Extension</td>
<td>0.4</td>
<td>24</td>
<td>5.9</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>29</td>
<td>8.1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>34</td>
<td>8.4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3</td>
<td>32</td>
<td>9.6</td>
<td>30</td>
</tr>
</tbody>
</table>
Batch Acid Titrations - Paragneiss

- Batch acid addition of a portion of the Sobek-NP – 6 Paragneiss Tests

![Graph showing NP (Kg CaCO3/tonne) for different tests. The graph is labeled "PARAGNEISS: NP." It shows bars for Sobek-NP, Carb-NP, and Effective-NP for tests 1 to 6.]
Sobek-NP to Effective-NP

• Enderbite
 – 30% of Sobek-NP is effective
• Paragneiss
 – 30% of Sobek-NP is effective
• Troctolite
 – 20% of Sobek-NP is effective

• Further investigations can use Sobek-NP to estimate Effective-NP
Neutralization Potential Ratios

![Graph showing neutralization potential ratios based on total sulphur percentage. The graph compares Non-PAG, PAG, and Uncertain categories with different markers for Sobek-NPR, Carb-NPR, and Effective-NPR. The x-axis represents total sulphur percentage, ranging from 0.001 to 1, while the y-axis represents NPR, ranging from 0.001 to 100. The graph includes a vertical line at 0.1% sulphur concentration.]
Effective-NPR and Sulphur

- **PAG**: $S > 0.2$
- **Uncertain**: $0.1% > S > 0.2$
- **Non-PAG**: $S < 0.1$

![Graph](image-url)
Mine Rock Management Conclusions

• Total sulphur content used as a standalone predictor of ARD

• The sulphur content of 0.2% S appears reasonable based on effective NP

• A 0.1%S value to identify PAG and non-PAG materials will be more conservative

• Carbonate content not a reliable predictor of Effective-NP at Voisey’s Bay

• Should assess metal leaching characteristics to confirm low risk for rock with less than 0.1%S
The Work Continues

- Field investigation in progress to evaluate the behaviour of the non-PAG rock in the CRD

- Confirmation of S criterion and investigation of metal leaching within the field “kinetic test cell”