Metal Leaching and Acid Rock Drainage Prediction, Prevention and Mitigation at the Brucejack Gold Mine

Colleen Atherton and Alison Shaw

November 28, 2018
Brucejack Mine

Located in Northwest BC
Mine Site Surface Layout

- WZ Portal
- Camp Creek
- Contact Water Pond
- Waste Rock Pad
- Mill
- VOK Portal
- Phase II Camp
- Phase I Camp

Brucejack Lake

Scale: 500 m
RECEIVING ENVIRONMENT

Mitchell Ck.

Sulphurets Ck.

Mine Site
ARD Potential

- Volcanic arc-related epithermal vein deposit
- Large gossan
- Low pH observed seasonally in local creeks
- ABA analysis from previous operator indicated waste rock was PAG (MEND, 2005)
Metal Leaching/ Acid Rock Drainage Management Plan

- Water Quality model developed to predict effects
- Minimize bedrock disturbance
- Confirm and document geochemical assumptions
- Triggers for further investigation
ARD Prevention

- Mine designed and constructed to prevent/minimize ARD generation
 - Core infrastructure platforms ~30 ha.

- Management strategies
 - Minimize surface excavation
 - No PAG rock permitted for use in surface construction
 - Place all waste rock under permanent water cover
Surface and Underground Waste Rock Deposition Schedule

- Surface WR to Lake
- UG WR to Lake
- Total WR to Lake

Waste Rock Deposition

September 2018
Contact Water Management
Water Treatment Plant

- Designed to treat maximum predicted concentrations
- Designed to removed TSS and targeted metals and adjust pH
- Will operate as long as necessary to mitigate impact of ARD from underground workings and surface disturbance
Water quality model developed from preliminary data

Updates required every five years

Includes a variety of data sources from each lithology:
- Static testing (> 500 samples)
- Humidity cells (46)
- Saturated columns (15)
- Field Bins (14)
- Wall washing stations (5)

ML/ ARD Mgmt Plan identifies triggers for additional investigation or review of model
Ongoing Characterization
Underground Waste Rock Static Test Results

- **Conglomerate (S3)** – Heterolithic boulder to coarse cobble conglomerate with sandstone
- **Fragmental (V12)** – Hornblende and/ or feldspar phric latite to andesite fragmental volcanic rocks and subordinate flows with minor ash and lapilli tuff
- **Volcanic Sedimentary Facies (VSF)** – Volcanically derived siltstone and sandstone with minor arenite and pebble conglomerate
Ongoing Characterization
Humidity Cell Tests

Active Conglomerate Tests

Active Fragmental Tests

Active VSF Tests

pH

Weeks
Geochemical Assessment of Impact

<table>
<thead>
<tr>
<th>Geological Model Unit</th>
<th>Relative % of Underground Waste Rock</th>
<th>HCT Time Until CaNP Depletion (years)</th>
<th>Field Bin ID</th>
<th>Field Bin Time Until CaNP Depletion (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base Case</td>
<td>Upper Case</td>
<td></td>
</tr>
<tr>
<td>Volcanic Sedimentary Facies (VSF)</td>
<td>52.1</td>
<td>258</td>
<td>61</td>
<td>FB-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FB-4</td>
<td>2337</td>
<td></td>
</tr>
<tr>
<td>Fragmental</td>
<td>22.0</td>
<td>127</td>
<td>3</td>
<td>FB-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FB-6</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FB-7</td>
<td>1112</td>
<td></td>
</tr>
<tr>
<td>Conglomerate (S3)</td>
<td>16.4</td>
<td>144</td>
<td>12</td>
<td>FB-8</td>
</tr>
<tr>
<td>Bridge P1</td>
<td>5.2</td>
<td>792</td>
<td>343</td>
<td>FB-3</td>
</tr>
</tbody>
</table>

- Calculated NP depletion times are >> 2 years
- Loads accumulated during the first 2 years of exposure, based on lithology-specific field bin data and estimated exposed volumes were incorporated into the water quality model
- Loads associated with exposed waste rock are insignificant and result in insignificant change to lake water quality (e.g., a change of < 0.4 mg/L SO4, < 1ng/L As, < 1ng/L Zn)
Ongoing Studies

- Kinetic tests ongoing
 - Behaviour of waste in lake and UG mine
 - Behaviour following flooding

- Wall Washing
 - Evolution of mine wall geochemistry
 - Planning for closure

- Results used to refine site WQ model
References
