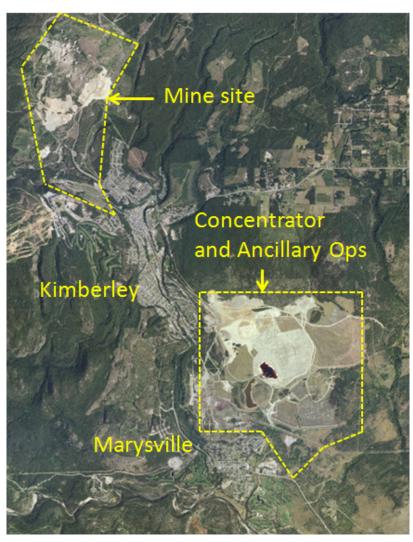
Post Closure Water Management at the Reclaimed Sullivan Mine

November 29, 2018 – 25th MEND ARD/ML Workshop Michelle Unger – Teck Resources Ltd. Ryan Peterson – SNC-Lavalin Inc.

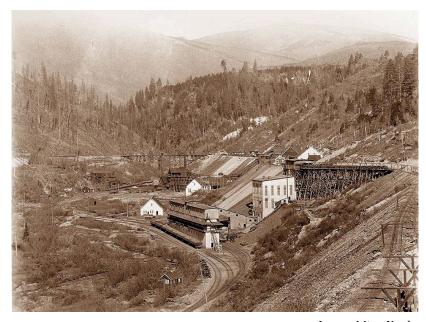
Outline of Presentation

- Location and history
- Environmental concerns
- Overview of water management
- Monitoring and maintenance
- Key challenges and improvements
- Wrap-up

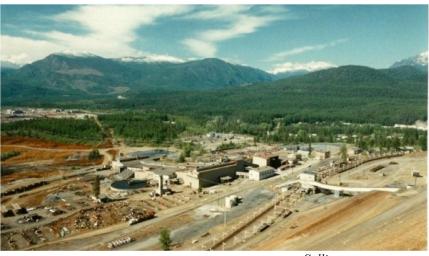


View from reclaimed No.1 Shaft waste rock dump

Site Location

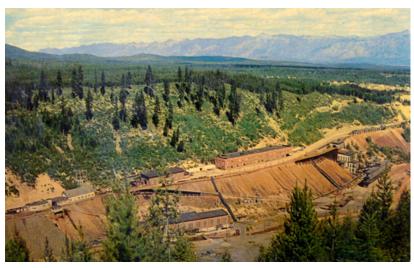


Site History


- Ore body discovered in 1892
- > 6.0% Pb, 5.7% Zn, 71 g/t Ag, 25% Fe
- Operated 1909 2001
- Decommissioning and reclamation activities complete by 2006
- EMPR and ENV Regulatory requirements

Fertilizer, iron, steel plants

Lower Mine Yard



Sullivan concentrator

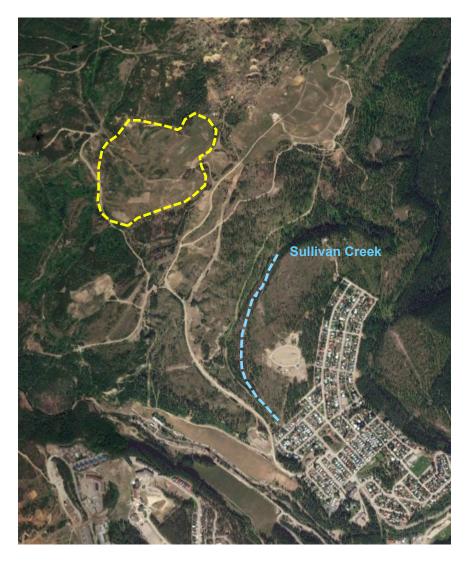
Environmental Concerns

- Wastes produced
 - > 9.75 M tonnes of waste rock
 - > 4.3 M tonnes of float rock
 - 122 M tonnes of tailings
 - 7.0 M tonnes of phosphogypsum
 - > 3.4 M tonnes of iron oxide
- > Elevated metals in soil
- Water management required in perpetuity to address acid rock drainage (ARD)

Lower Mine Yard and North Waste Rock Dump

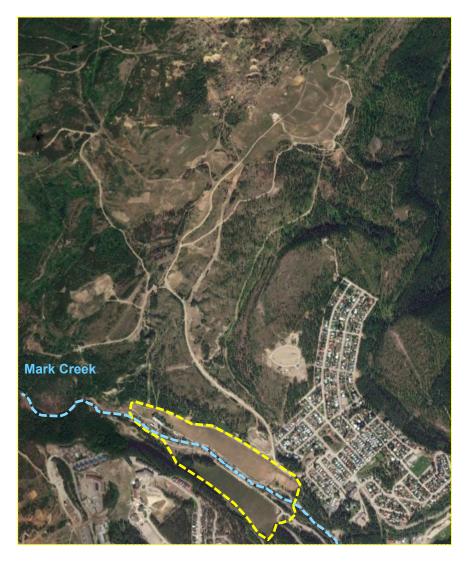
Sullivan concentrator and iron tailings pond

Water Management – Mine Area


- No.1 Shaft Waste Dump
 - Till cover system
 - Toe drain

Water Management – Mine Area

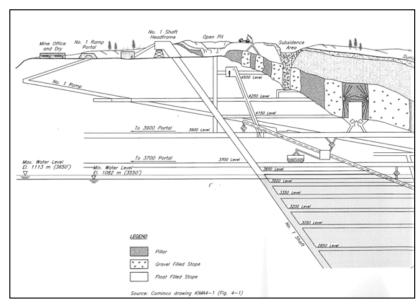
- No.1 Shaft Waste Dump
 - > Till cover system
 - > Toe drain
- Open Pit and waste dump
 - Till cover system
 - Seepage collection in Sullivan Creek



Water Management – Mine Area

- No.1 Shaft Waste Dump
 - > Till cover system
 - > Toe drain
- Open Pit and waste dump
 - > Till cover system
 - Seepage collection in Sullivan Creek

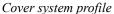
Lower Mine Yard


- > Flume and creek diversion
- Portal seepage collection
- Till cover systems
- Toe drain (north dump)
- Interception trench (south dump)
- Deep pumping wells

Water Management - Underground

- Surface water and groundwater enter underground workings
- Voids between 2450' and 3650' levels act as reservoir
- Operating range from 3550' and 3650' - capacity of 625,000 m3

- Waste impoundments are the primary sources:
 - Iron ponds
 - Siliceous ponds
 - Gypsum ponds
 - Calcine ponds
- Water impoundments for temporary storage



- Cover systems
 - Tailings covered with float rock capillary break and till cover
- Clean water diversion
 - Intercepts surface water for conveyance around tailings

Weir at discharge point for Dobson's Draw diversion

Collection ditches

- Within tailings and around perimeter to intercept near surface flows and seepage
- Gravity drainage to collection ponds or designated pump stations

Dye Testing in Siliceous Pond Collection Ditch

Gypsum Pond Collection Ditch

Iron Pond Collection Ditch

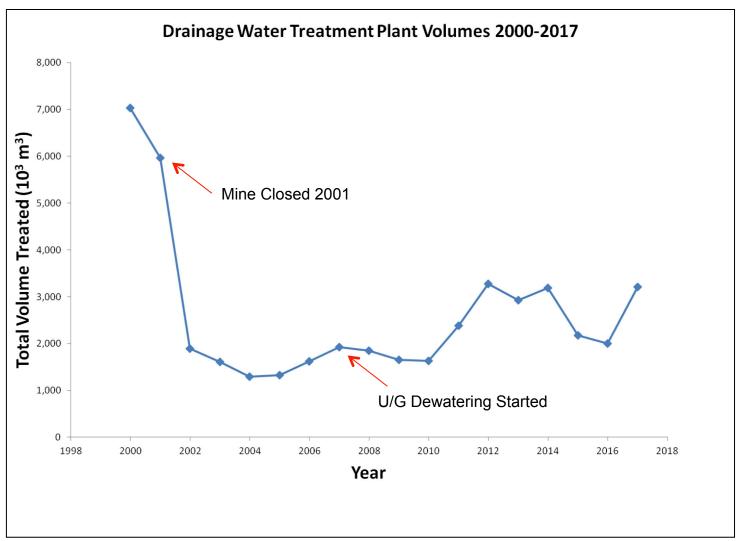
- > Pump stations
 - Within storage ponds and conveyance features to collect surface flows and shallow groundwater
- Groundwater interception systems
 - Collect deeper groundwater in trenches for diversion to pumping location

Pump station 938 and instrumentation panel

Backfilled groundwater interception trench system for PS937

Storage and Treatment

- Water stored in the ARD storage pond and underground mine
- Treated during two annual campaigns in a high-density sludge treatment plant
- Treated effluent discharged under permit to St. Mary River
- Sludge discharged to sludge impoundment
- > Plant operating since 1979


ARD Storage Pond

Drainage Water Treatment Plant on St. Mary River

Treatment Volumes

Monitoring Programs

- Seepage Collection
 - Seepage and pumped flows
 - Seepage quality in source areas
- Groundwater
 - Approximately 80 wells sampled in routine program
 - Additional wells for specific investigations
- Receiving water
 - Approximately 15 locations sampled in routine program
 - Frequency varies between weekly and semi-annually
 - Additional locations for specific investigations

Monitoring well upgradient from Open Pit Waste Rock Dump

Mark Creek through Lower Mine Yard area

Operation and Maintenance Programs

- Completed by Teck staff and contractors
- Daily surveillance
- Inspections of engineered structures
- > Preventative maintenance
 - > Pump and pipe cleaning
 - Instruments, electrical systems
- Underground maintenance
 - Access, emergency systems
 - > Pumping infrastructure
- Treatment plant operation and maintenance

Key Challenges and Continual Improvement

Collection system efficiency

- Aging infrastructure
- Limited performance criteria
- New and evolving performance objectives
- Bypass events

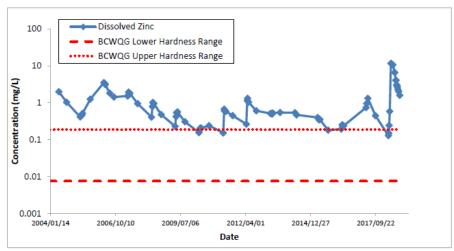


Figure A: Dissolved zinc at KC-S6 (2004-2018) compared to BCWQG AW for total zinc Values plotted on log scale

Improvements through:

- Replacement and upgrades
- Performance verification plans
- Instrumentation upgrades
- New and expanded systems

Precipitate staining from ARD bypass identified in 2012

New Groundwater Interception System

Interception trench excavation and collection system installation

Collection piping installed in trench box, depths up to 8 m

Low permeability liner installed on downgradient side of trench

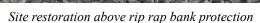
Collection vault, temporary pumping configuration

Treatment Plant Diffuser Replacement

Damaged diffuser pipe

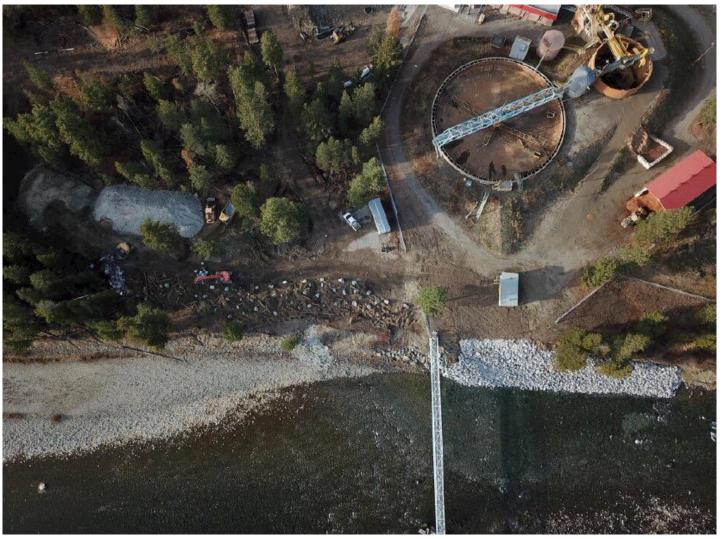
Overview of primary and secondary containment

Construction of primary containment with gravel totes



Installation of trench box with structural sheet pile

Treatment Plant Diffuser Replacement



Site restoration in lay down area, planting mounds and woody debris

Treatment Plant Diffuser Replacement

Aerial view of site following restoration

Key Challenges and Continual Improvement

Conveyance and storage

- Pipe capacity
- Pipe fouling
- Water balance
- Storage capacity limited

Improvements through:

- Upgrading piping
- Routine preventative maintenance
- > Instrumentation upgrades
- Increasing clean water diversion
- Exploring alternative treatment options

Water pooling in borrow pit

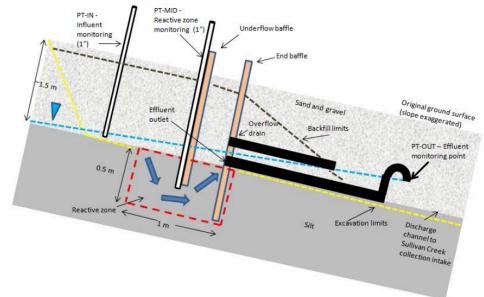
Alternative Treatment Options – Passive treatment bench and field scale research

- Bench scale column testing
 - Biological system (SRB)
 - Silage, pulp mill biosolids, peat, brewing grains
 - > 100-day duration
 - > >98% Zn and Cd removed

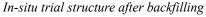
Bench-scale column set-up, upflow configuration

Field column testing

- Groundwater used as feed
- > 80-day duration
- > >99% Zn and Cd removed
- Secondary parameters (Fe, Mn, BOD) in effluent



Field column testing set-up


In-situ field trial

- Funnel and gate PRB concept
- Gravity fed system
- >>99% Zn and Cd removal during first year of operation
- Metals removal rates decreasing over time (still ~90%)
- Biological activity limited
- > Trial ongoing > 2 years

In-situ trial conceptual profile

Key Challenges and Continual Improvement

Operation and Maintenance

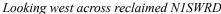
- Resources/staff required
- Numerous systems
- Aging systems, fouling
- Confined space entry
- Power interruptions

Improvements through:

- Realistic budgeting/forecasts
- Use of experienced contractors
- Preventative maintenance, upgrades
- Design to reduce confined space entry
- Back-up power systems

Precipitate build up on deep aquifer pump

Back-up power generator housing


Wrap-up

- ARD from waste rock/mine areas and tailings facilities (90 year mine operation)
- Water management and treatment required in perpetuity
- Comprehensive water monitoring programs
- Routine maintenance program and dedicated contractors key
- More staff onsite than visioned during closure planning
- Continual improvement to water management systems required for long-term risk management

St. Mary River with diffuser construction in background

Thank you

Elk Crossing St. Mary River - Shona Rubens Photo

Michelle Unger, <u>michelle.unger@teck.com</u>
Ryan Peterson, <u>ryan.peterson@snclavalin.com</u>

