2019 Workshop

26th Annual BC MEND Metal Leaching/Acid Rock Drainage Workshop

Vancouver, BC. December 4-5, 2019

Equity Mine, photo courtesy of M Aziz

A Review of Potential Improvements to Mine Rock Stockpile Construction Methods

O'Kane, M.¹, Taylor, J.², Robertson, J.¹, Pape, S.², Tremblay, G.³, Kelley, B.³ 1: Okane Consultants, 2: Earth Systems, 3: INAP BC MEND ML/ARD Annual Workshop December 4-5, 2019

Essence of Project Proposal to INAP

"... Essence of the proposed project is to determine, through strategic MRS construction methodologies, whether there is a mine-life-cycle cost benefit to reducing risk associated with MRS geochemical stability, by changing MRS construction methods, for a minimal incremental cost, during life-of-mine ..."

Session Discussion Themes

BC MEND ML/ARD Annual Workshop

December 4, 2019

3 okane

Session Discussion Themes

• Project Timeline

- Project Scope (within 9 tasks)
 - 1. Framework for Communicating Risk 2. ML-ARD...
 - Why Focus on Mine Rock Stockpiles?
 - 3. Conceptualization / Evaluation of:
 - ➤ Conventional MRS Performance
 - Alternative MRS Construction Approaches
 - 4. Communicating Opportunity using Risk-Based Approach Supported by...
 - Literature Review and Case Studies
 - Semi-Quantitative Assessment thermal / gas / water, and acidity generation modelling

Opportunities

Project Timeline(s)

- May 2018 Discussion
 ➢ Four (4) phases discussed
- December 2018 Proposal

Phase 1: Review and Summary of Methodologies / Technologies

- April 2019 draft Report
- November 2019 final Report

Minor edits / changes final version to be available very soon at:

www.inap.com.au

Project used the

- Failure Modes and Effects Analysis (FMEA)
- as a tool
- to inform on, and communicate,
- Incremental Benefit...

... Alternative to Alternative

FMEA Evaluating Question:

"... What conditions could lead to the **geochemical failure** of the applied MRS construction method, whereby "failure" refers to **inadequate** spatial extent of **suboxia** conditions and/or **increased treatment** requirements?..."

FMEA Evaluating Timeframe:

Immediate-Term:

Permitting, planning, design, construction and the operation years (assumed 10 years of rock placement)

Short-Term:

➢ Closure Period >10 years

Long-Term:

➢ Post-Closure Period >100 years

FMEA Evaluating Timeframe:

uaing	ппсп	anc.		Consequence Category						
Failure Mode	Effects and Pathways	Likelihood	#1	#2	#3	#4	Risk Ranking			
We de	veloped									
severa	I (~20) 'ł	nigh-leve								
Potenti	al Failur	e Modes								

				Con	sequence Sev	erity	
			Low (L)	Minor (Mi)	Moderate (Mo)	Major (M)	Critical (C)
		Expected (E)	Moderate	Moderately High	High	Critical	Critical
		(H) (H)	Moderate	Moderate	Moderately High	High	Critical
	Likelihood	(W) are appoy		Moderately High	High	High	
		(T) MOT	Low	Low	Moderate	Moderately High	Moderately High
		Not Likely (NL)	Low	Low	Low	Moderate	Moderately High

FMEA Evaluating Timeframe:

vui								
	Failure Mode	Effects and Pathways	Likelihood	#1	Risk Ranking			
I-T	FM #1	EP #1-1	High	Minor	Major	Low	Low	High

				Con	sequence Sev	erity	
			Low (L)	Minor (Mi)	Moderate (Mo)	Major (M)	Critical (C)
		Expected (E)	Moderate	Moderately High	High	Critical	Critical
		(H) (H)	Moderate	Moderate	Moderately H n	High	Critical
	Likelihood	Moderate (M)	Low	Moderate	Moderately High	High	High
		(T) MOT	Low	Low	Moderate	Moderately High	Moderately High
		Not Likely (NL)	Low	Low	Low	Moderate	Moderately High

FMEA Evaluating Timeframe:

_vai					Consequence Category							
	Failure Mode	Effects and Pathways	Likelihood	#1	#2	#3	#4	Risk Ranking				
<mark>I-T</mark>	FM #1	EP #1-1	High	Minor	Major	Low	Low	High				
<mark>S-T</mark>	FM #1	EP #1-1	Mod	Minor	Mod	Low	Low	Mod-High				
<mark>L-T</mark>	FM #1	EP #1-1	Low	Minor	Mod	Low	Low	Medium				

Example, for:

Immediate-Term to Short-Term

Application of an Alternative MRS Methodology

ML/ARD: ...Focus on Mine Rock Stockpiles?

- Over the wide range of climate conditions possible...
- Mine Rock Stockpiles (MRSs) typically contribute 75%, or more, of the acidity load at mine site, and

ML/ARD: ...Focus on Mine Rock Stockpiles?

- Over the wide range of climate conditions possible...
- Mine Rock Stockpiles (MRSs) typically contribute 75%, or more, of the acidity load at mine site, and...
- The mining industry typically manage this risk...

Improved MRS Construction Methods

Six "Improved" Construction Methods Identified for Assessment

- Four (4) "geotechnically-focused" methods
- Two (2) "geochemically-focused" methods (geochemical engineering)

Geotechnically-Focused Methods:

Manage Vertical and/or Lateral Gas Transport Capacity

Geochemically-focused methods:

- 1. Oxygen consuming materials
- 2. Sulfide passivation

Additional (evolving) methods also identified in report

Mining and Storage of Reactive Shale at BHPBilliton's Mt Whaleback Mine

P Waters¹ and M O'Kane²

Köppen-Geiger Climate Classification

Bwh – Hot Desert

Open Pit – Highly reactive pyritic / carbonaceous shale

Mining and Storage of Reactive Shale at BHPBilliton's Mt Whaleback Mine

P Waters¹ and M O'Kane²

Open Pit – Highly reactive pyritic / carbonaceous shale

O'Kane et al, 2019: Improving MRS Construction Methods BC MEND ML/ARD Annual Workshop December 4, 2019

17

Mining and Storage of Reactive Shale at BHPBilliton's Mt Whaleback Mine

P Waters¹ and M O'Kane²

Mining and Storage of Reactive Shale at BHPBilliton's Mt Whaleback Mine

P Waters¹ and M O'Kane²

Open Pit – Highly reactive pyritic / carbonaceous shale

Finer- and Coarser-Textured Mine Rock

VS.

Conceptualization... Finer-Textured Mine Rock

BC MEND ML/ARD Annual Workshop

December 4, 2019

Mining and Storage of Reactive Shale at BHPBilliton's Mt Whaleback Mine

P Waters¹ and M O'Kane²

Open Pit – Highly reactive pyritic / carbonaceous shale

December 4, 2019

- Köppen-Geiger Climate Classification
 - > Aw/As Tropical Savannah

- Mine Rock…
 - > S% ave. ~ 3%
 - ➤ ~40% PAF (PAG)
- We should observe...
 "Typical ML-ARD" but we don't

- Why Not...?
 - For a ~100m high x 1km wide x 2km long MRS...
 - After > 10 years ... only one seep with water quality issues of any significance (SO₄ only)

- Why Not...?
 - Oxygen availability during rock placement
 - Acidity generation is <u>not</u> "defined" by "all sulfides" oxidizing

- Why Not...?
 - Oxygen availability during rock placement
 - Acidity generation is not "defined" by "all sulfides" oxidizing
 - ~0.3m clay layer for truck tire damage
 - Limits Vertical Advective Gas Transport Capacity

- Why Not...?
 - Oxygen availability during rock placement
 - Acidity generation is not "defined" by "all sulfides" oxidizing
 - ~0.3m clay layer for truck tire damage
 - Limits Vertical Advective Gas Transport Capacity
 - Base up, thin lift
 Limits Lateral
 - Advective Gas Transport

- A system was created with Low Vertical Air Flow Capacity and
- Low Lateral Air Flow Capacity

Conceptual / Numerical... Low vs. High Gas Transport Capacity

29

Let's Evaluate a Valley Fill MRS...

Let's Evaluate a Valley Fill MRS... "Moderately Reactive Mine Rock Material"

O'Kane et al, 2019: Improving MRS Construction Methods 31 BC MEND ML/ARD Annual Workshop

December 4, 2019

Let's Evaluate a Valley Fill MRS... "Moderately Reactive Mine Rock Material"

Two Approaches

1. "Conventional"... Ridgeline End-Dumping 'high tip-head'

Let's Evaluate a Valley Fill MRS... "Conventional"... Ridgeline End-Dumping 'high tip-head'

• Advective and Diffusive Air Flow – Coupling of Water, Heat, Gas

Let's Evaluate a Valley Fill MRS... "Moderately Reactive Mine Rock Material"

Two Approaches

- 1. "Conventional"... Ridgeline End-Dumping 'high tip-head'
- 2. "Alternative"... Bottom Up End-Dumping 'short tip-head'

Let's Evaluate a Valley Fill MRS "Moderately Reactive Mine Rock Material"

35

Let's Evaluate a Valley Fill MRS ATIVE ACIDITY GENERATION ,400 (Kg/ 1,200 CUMULATIVE ACIDITY GENERATION FOR 256-SECTION OF 1M UNIT THICKNESS 1,000-800 600-400-200 0 20 5 25 10 15 0 SIMULATION YEAR O'Kane et al, 2019: Improving MRS Construction Methods 36 BC MEND ML/ARD Annual Workshop

December 4, 2019

Let's Evaluate a Valley Fill MRS LATIVE ACIDITY GENERATION ,400 (Kg/m) 1,200 CUMULATIVE ACIDITY GENERATION FOR 056-SECTION OF 1M UNIT THICKNESS 1,000--4 800 TIME5 REDUCTION 600-400-YEAR 10 200 ORIGINAL GROUND 0 20 5 25 15 10 0 SIMULATION YEAR O'Kane et al, 2019: Improving MRS Construction Methods 37

BC MEND ML/ARD Annual Workshop December 4, 2019

Session Discussion Themes?

- Project Timeline
- Project Scope (within 9 tasks)
 - 1. Framework for Communicating Risk
 - 2. ML-ARD...
 - Why Focus on Mine Rock Stockpiles?
 - 3. Conceptualization / Evaluation of:
 - ➤ Conventional MRS Performance
 - Alternative MRS Construction Approaches
 - 4. Communicating Opportunity using Risk-Based Approach Supported by...
 - Literature Review and Case Studies
 - Semi-Quantitative Assessment thermal / gas / water, and acidity generation modelling

Opportunities

				Consequences							bu
Failure Mode ID	Failure Mode Description	Timeframe	Likelihood	Environment Effects		Consequence Cost		Regulatory Approval		Level of Confidence	Highest Risk Rating
12	MRS design does not meet performance expectations due to inadequate (i.e., not enough) static geochemical characterization and therefore AMD risk classification in mine block model, leading to the Question	Immediate-Term	н	Mi	м	Mi	м	Mi	м	м	м
12		Short-Term	н	Mi	м	Мо	н	Mi	м	м	н
12		Long-Term	VH	Mi	м	С	VH	Mi	м	н	∨н

- Unexpectedly high amounts of PAF would increase acidity generation (high likelihood)
- Environmental effects are assumed to be minor because we will treat the water
- Requirement of water treatment incurs higher consequence cost
 - Long-term: Catastrophic consequence cost due to treatment in perpetuity and construction of

additional treatment plants (> \$100 M)

- High confidence there are many sites in this situation
- Very high risk rating a key driver for this project

	11 - Alter				(Conseq	uence	s			
Failure Mode ID	Failure Mode Description	Timeframe	Likelihood	Environment Effects	בוואו מוווופווו בוופכוא	Consequence Cost		Reculation: Approval		Level of Confidence	Highest Risk Rating
12	MRS design does not meet performance expectations due to inadequate (i.e., not enough) static geochemical characterization and therefore AMD risk classification in mine block model, leading to the Question	Immediate-Term	М	Mi	М	Мо	М	Mi	м	L	м
		Short-Term	L	Mi	L	Мо	М	Mi	L	L	м
12		Long-Term	L	Mi	L	Мо	М	Mi	L	L	М

- Even if there is more PAF material than expected, the construction methods result in ~80% of the MRS remaining suboxic (no re-supply of oxygen)
- The likelihood of the failure mode causing 'the question' is decreased
- I-T: Potential need for water treatment because suboxia does not occur immediately
- Short- and Long-Term⁻ Suboxia established⁻ the risk of the failure mode can be mitigated
- Low confidence in risk ranking Generational Change; we require more full-scale data from Purposeful MRS construction
- Ivioderate risk rating decreased from a "very high" risk rating

				Consequence					s		
Failure Mode ID	Failure Mode Description	Timeframe	Likelihood		Environment Enects	tan'i anno maan			neguarury Approvar	Level of Confidence	Highest Risk Rating
16		Immediate-Term	М	Mi	м	Мо	М	Mi	м	м	м
16	Engineered layers at top of lifts to manage vertical gas transport do not meet performance expectations due to insufficient material availability, leading to the Question	Short-Term	М	Mi	м	Мо	м	Mi	м	м	м
16	······································	Long-Term	М	Mi	м	Ма	н	Мо	м	м	н

 Engineered layers are a key facet to controlling air flow capacity; site-specific designs are required

- There is a risk of increased costs if the material on site cannot meet performance expectations
- Costs include making the material on site, shipping material to site, or treating water
- Can the other improved MRS construction methods mitigate these risks?

					(Conseq	uence	s			
Failure Mode ID	Mode Description	Likelihood	Environment Effects		Consequence Cost		Regulatory Approval		Level of Confidence	Highest Risk Rating	
16		Immediate-Term	L	Mi	L	Мо	м	Mi	L	М	м
16	Engineered layers at top of lifts to manage vertical gas transport do not meet performance expectations due to insufficient material availability, leading to the Question	Short-Term	L	Mi	L	Мо	М	Mi	L	М	м
16		Long-Term	L	Mi	L	Мо	М	Mi	L	м	м

- Adding 'true' encapsulation (lateral gas transport), oxygen consuming layers, and sulfide passivation
 - Strategic placement of NAF material around PAF material
 - Placement of alkalinity released materials of top of MRS
- If there was insufficient material for the engineered layers, it is unlikely that water treatment needs would increase
- The risks are further mitigated by the presence of additional construction methods

Session Discussion Themes?

- Project Timeline
- Project Scope (within 9 tasks)
 - 1. Framework for Communicating Risk
 - 2. ML-ARD...
 - Why Focus on Mine Rock Stockpiles?
 - 3. Conceptualization / Evaluation of:
 - ➢ Conventional MRS Performance
 - Alternative MRS Construction Approaches
 - 4. Communicating Opportunity using Risk-Based Approach Supported by...
 - Literature Review and Case Studies
 - Semi-Quantitative Assessment thermal / gas / water, and acidity generation modelling

Opportunities

Opportunities

- Incorporating Mine-Life-Cycle costing into Life of Mine Planning
- Evaluating existing MRSs
- Field-Scale Evaluations
 - Setting Expectations... Spatial and Temporal Influences!

Thank You!

Our Rainbow of Hope for Children and, Habitat for Humanity Initiative

Ask us for more information on

university of saskatchewan Mine Overlay Site Testing Facility

GLOBAL INSTITUTE FOR WATER SECURITY MOSTFACILITY.USASK.CA

Let's Evaluate a Valley Fill MRS... "Alternative"... Bottom Up End-Dumping 'short tip-head'

Spoil Pile Oxidation - Convective Air Flow - Coupling of Water, Heat, Gas

