Ecometrix Environmental

In-Situ Application of Batch Treatment for Water Management at Closed Mine Sites

S. Barabash, R. Nicholson, B. Fraser and M. Aziz

Charlene Hogan Patrick Chevalier Marko Adzic (Teck)

Harri Ollila

🛞 Envirobay

Bernard Aube

Mike Aziz Tyler Provencal

Ecometrix

Michael White Derek Amores Joe Tetreault

Roadmap

- Context and Relevance
- Study Objectives
- Phase I Bench Scale Studies
- Phase II In situ Batch Treatment
- Modelling and Scale-up
- Next Steps

Open Pits as a Water Management Resource?

INTRODUCTION

Ecometrix

- An open pit can be a resource or an opportunity at a closed mine site to manage mine waste and water quality
- Common applications
 - Repository for PAG or ML wastes
 - As a component of the overall site water management system
- Few examples where in situ batch treatment used as part of the constituent source term management strategy
 - Highland Valley Copper, BC
 - Selbaie, Quebec

- Can in situ batch treatment represent a practical, viable, effective low-cost alternative to conventional water treatment?
- Does in situ batch treatment meets the objectives of applicable mine closure codes and standards and associated regulations?

CASE STUDY **Nighthawk Lake Mine** Open Pit

CASE STUDY

Ecometrix

Environmental INTELLIGENCE

- The Night Hawk Lake Mine is within the Porcupine Gold Camp, east of the downtown core of the City of Timmins
- Former gold mine
- The site is currently owned and operated by Newmont-Goldcorp, Porcupine
- The Night Hawk Lake Mine Open Pit was mined between 1995 and 1999
- U/G mining dates to early 1900s
- The site has been reclaimed and is in an advanced state of closure

Study Objectives

CASESTUDY

• Although this research has targeted arsenic as a key constituent of interest, the efficacy of batch treatment will also be evaluated more broadly in terms of overall constituent leaching and mitigation.

BENCHSCALE

Theoretical	Actual	
	Batch #1	Batch #2
3:1	2	2
5:1	3	3
10:1	7	6
15:1	10	10
20:1	14	13
	20	19

Molar ratios (Fe:As) based on an approximate 0.6 mg/L of As pitwater source concentration

BENCHSCALE

BENCHSCALE

BENCHSCALE

Ecometrix Environmental

FIELDTRIN

FIELDTRIM

502300 502320 502340 502360 502380 502400 502420 502440 502460 502480 502500

Water Volume: 100,000 m3 Average Depth: 10m Maximum Depth: 22m

- Water quality in the open pit is measured routinely (annually)
- Elevated levels of a number of constituents, in particular arsenic
- Gradient of arsenic observed with depth
- Pit mixes fully with depth seasonally

Ecometrix Environmental

LED TRIAL

- Field study completed November 5th-12th, 2018
- Two water cannons used to apply dosage of ferric sulphate.
- 10% of the 100,000 m3 pit water was recirculated while applying a 20:1 (final) dosage of ferric sulphate in the recirculated water.
- This approach required less time and smaller process equipment that will translate overall to less capital and operating costs when scaled to larger pits.

Ecometrix Environmental

-ELD TRIAL

Ecometrix Environmental

FIELDTRUN

Ecometrix Environmental

FIELD TRUN

Ecometrix Environmental

FIELDTRUN

Ecometrix Environmental

FIELDTRIN

Ecometrix Environmental

FIELD TRUN

Ecometrix Environmental

FIELDTRIAL

ELD TRUN Results Total Arsenic

ELD TRUN Results Dissolved Arsenic

Phase II Field Scale Trial Summary

Environmental INTELLIGENCE

IELD TRIAL

Ecometrix |

- pH values similar to pre-treatment
- Effective arsenic removal at surface and mid depths after 5 days of application
- Some cobalt removal at surface
- Monitoring the performance and behaviour of arsenic and iron over time is warranted

NHLP Modelling

Modeling

Ecometrix Environmental

Modeling

Scale Up using McEwen's Black Fox Mine Modelling

Ecometrix Environmental

Modeling

Black Fox Mine Summary

MODELLING

- Conceptual cost trade-off comparing conventional treatment to batch treatment strategies
- Costs were discounted using NPV with 3% discount rate model run for 160 years
- Integrating the pit into the water management strategy and utilizing in situ batch treatment provided opportunity for significant cost savings (3- to 4-times cost reduction over conventional WTP), without compromising environmental protection
- Closure Plan submitted for regulatory review with in situ batch treatment as the primary long term water quality management strategy
- Closure Plan has been accepted and "filed"

Next Steps Summary

NEXTSTEPS

- Using Environmental Intelligence allowed for alternative ways to manage water on site
- Monitoring program ongoing to evaluate long term performance of the insitu batch treatment
- Develop modelling scenarios to determine when batch treatment will be beneficial and when a water treatment plant may be optimal
- Follow up on the potential redox cycling to verify that it is a "closed" cycle and will not disrupt the clean surface water quality.
- Sludge stability test work suggested as part of this follow-up as the treatment solids settle (previous test work suggests the treatment sludge is not an ongoing source issue)

Thank You

sbarabash@ecometrix.ca