Rock Management & ARD Mitigation at a Northern Minnesota Highway Realignment

Presented December 4, 2019 BC MEND Conference - Vancouver, BC

Mehgan Blair, PG (MN), Barr Engineering) Dr. Rens Verburg, PhD, PGeo (BC) (Golder) Jason Richter, PG (MN) (Dept. of Transportation)

GOLDER DEPARTMENT OF TRANSPORTATION

BARR

Geography/Orientation

Geology and Mining

Cu-Ni-PGE Sulfide

General Outline

- Characterization and planning phase
- Mitigation Plan development/acceptance
 - Characterization, planning
 - Design challenges
 - Technical basis for mitigation
- Implementation
 - Amendment materials
 - Screening process/lime addition/membrane
 application
 - Field challenges
- Water quality monitoring and results

Investigation/ Characterization

- -Over 5,500 feet of core drilling in 200 boreholes
- -~ 900 assays
- -~ 8,000 feet of electrical resistivity/IP geophysics
- -~6 years of study and \$1M+ in investigative expenses
- -Consulted MN DNR and other US DOTs
- -Formation of Technical Working Group and Environmental Advisory Team

Site Geology

Mitigation Plan

- Acid-base accounting
 - -total sulfur and carbon; speciated forms of sulfur
 - -neutralization potential
- Identified a design criterion for PAG rock: NPR< 3
- Determined a preliminary lime demand for the project

PAG Rock Mitigation Plan

Plan Protocols:

- Designated PAG/non-PAG
- Placed limits on crushing of till and overburden
- Consolidation plan, specs on neutralizing agents
 - dosing rates limestone/ag lime

F-3 38,795

- lining ditches with limestone
- repository designs
- monitoring for 10 years

Construction Monitoring needs:

- Confirmatory testing for sulfur
- Adjustment of lime dose rates based on PAG rock and lime characteristics
- Screening aggregate sources

Plans: Pre-blast Testing; Planning for PAG Fill

Design of Typical Repository

MINNESOTA DEPARTMENT OF TRANSPORTATION			HIGHWAY 169 REALIGNMENT ARD MITIGATION PLAN					
CONBULTANT	YYYY-894-00	2315-06-30	THE	THE				
	DESIONED	F36	TYPICAL FIL	LSECTION				
Calder	PREPARED	F35						
Associates	REVENED	TK	PROJECT NO.	PHASE	BEV.	FOURS		
	APPROVED	RV	1543068	002	0	8		

Lime Mitigation/Dosing

- NPR \geq 3 is repository design criterion
- AP and NP were pre-determined to provide estimate of augmentation of NP required to achieve NPR = 3
- NP from rock and added lime:

$$NP_{mitigation} = (3 \cdot AP_{revised}) - NP_{rock}$$

Contractor provided instruction on amendment rates

Dosing Rates

R	ock Cut ar	nd Section Deta	ils	Resul	ts of Field				Limestone					Ag Lime	_	
Rock Cut	Rock Cut Section	STA to STA	Pre- constructi on Rock Cut Section Volume Estimate	Field Verified Rock Cut Section Volume	Revised Limestone Requirement (based on new %S and/or rock volume)	Truck Count Estimate	Total Corrected mass	Total corrected volume	Application Rate	Section Totals	Section Totals	Total Corrected mass	Total corrected volume	Application Rate	Sectioin Totais	Section Totals
	Q1	357+00-359+00	16	30	0	2	0.0	0.0	0.0			0.0	0.0	0.0		
	Q2	359+00-36100	1,617	1,112	0	62	0.0	0.0	0.0	34.6	18.4	0.0	0.0	0.0	44.5	41.9
0	Q3	361+00-362+00	1,157	838	0	47	0.0	0.0	0.0			0.0	0.0	0.0		
14	Q4	362+00-365+00	4,786	7,189	41	399	19.9	10.6	0.03			25.6	24.1	0.06		
	Q5	365+72-368+00	7,151	5,011	28	278	13.9	7.4	0.03			17.8	16.8	0.1		
	Q6	368+00-370+50	72	711	2	39	0.8	0.44	0.011			1.1	1.0	0.025		
	R1	374+00-375+50	538	648	0	36	0.0	0.0	0.0			0.0	0.0	0.0		
	R2	375+50-379+00	2,888	1,411	1	78	0.5	0.2	0.0031	0.5	0.2	0.6	0.6	0.0071		
	R3	379+00-382+50	0	0	0	-	0.0	0.0	#VALUE!			0.0	0.0	#VALUE!	0.6	0.6
IN IS	R4	382+50-385+00	689	850	0	47	0.0	0.0	0.0			0.0	0.0	0.0		
	R5	385+00-386+00	299	13	0	1	0.0	0.0	0.0			0.0	0.0	0.0		
	R6	386+00-388+00	0	0	0	-	0.0	0.0	#VALUE!			0.0	0.0	#VALUE!		
		390+28.95-														

- Real-time adjustments based on
 - -New confirmatory sulfur values
 - -Lime quality, moisture, CCE
 - -Estimated capacity of the trucks and of backhoe bucket

Mitigation Plan finalized & accepted in 2016

Groundbreaking May, 2017

Blasting the highs

Filling the lows

- primary PAG fill area, prior to grading

- rock-cored highway

~20m high PAG rock landfill

plans: PAG fill/repository

NP Amendment Materials

Material	Limestone	Agricultural Lime
Source	Michigan dolomitic limestone via neighboring site	Pulp mill lime mud
Processing	Crushed on site to meet spec	Stored under plastic on site
PSD	<1"	100% passing 60 mesh
Moisture Content		20%
CCE	102%	100.4

Besides TNP and Can, ag lime is source of Na, Mg, Cl

Hauling, dosing, placing, grading

Building successive benches

Lots of equipment - 20 side dumps- 14 articulators

- 3 dozers
- 2 rollers
- 1 backhoe

Fast, intense pace, in restricted work area

Ideal blending

Fabrics and covers

Plan versus execution

- TAT conflicted w/ construction schedule
 - -Confirmatory testing became another preconstruction investigation
- Blending impractical at low dose rates
 Combined blending and layering
- Examination of saturated hydric soils
 - -Reactive secondary sulfides
 - -field leach test, odor after HCl

project challenges

- Rain
 - 500mm
- Hurricane
- Snow

As-Built Project Configuration & Monitoring Network

As-built PAG repository characteristics

	Primary PAG rock fill (F-5)	Secondary PAG rock fill (F-3)
Approximate volume of mixed PAG rock and lime amendment material contained	54,900 yd ³ PAG rock; 3,000 yd ³ lime amendment ¹	9,100 yd ³ PAG rock; 200 yd ³ lime amendment
Location	Sta. 91+75 to 103+00	Sta. 55+00 to 58+00
Approximate dimensions	35 ft. (max thickness) by 780 (max length); Two isolated fills, on either side of a fault	20 ft. (max thickness) by 405 (max length); entirely west of the fault
Initial PAG placement	May 26, 2017	September 20, 2017
Final geomembrane cover placement	November 2, 2017	November 3, 2017
Groundwater monitoring network	MW-2, MW-2-D, MW-3-D	MW-1, MW-4-S, MW-4-D

Primary PAG Fill Section

Drain-down water quality response

8

Drain-down water quality response

Trace metals – drain-down response

Summary

- Broad stakeholder group/ many agencies (Health, Natural Resources, Pollution Control, DOT)
 - drove detailed investigation, enhanced mitigation, and public engagement
- Applied mining best practices to prevent and mitigate ARD
 - Drain-down effect apparent, monitoring ongoing
- Project earned awards from the Office of Environmental Services, and from the Association of General Contractors
 - Serves as basis for new formalized MnDOT ARD guidance

Questions?

