

THE UNIVERSITY OF BRITISH COLUMBIA

Mechanisms controlling circumneutral drainage generation at Antamina

Bas Vriens – Queen's University Roger Beckie – University of British Columbia BC MEND ML/ARD 2020

The many faces of neutral rock drainage

Everything that is *not* ARD?
 → No standardized definition of NRD!

- When can one encounter NRD:
 - (i) Sulfide oxidation in the presence of sufficient acid-buffering
 - (ii) Weathering of non-acid generating minerals (i.e., carbonates and silicates, dissolution of salts)
 - (iii) Insufficient treatment of ARD: pH is increased to near-neutral but certain contaminants remain present at elevated concentrations
 - hardness (mostly Ca and Mg)
 - major ions (e.g., sulfate and chloride)
 - metal(oid)s (e.g., As, Se, Ni, Zn)
 - other contaminants (e.g., organics)

Relevant solutes in NRD

Focus on 4 metal(oid) oxyanions: As, Se, Mo, Sb

Relatively comparable aqueous biogeochemistry

What materials cause NRD with harmful levels of As, Se, Mo, Sb?
Which processes and mechanisms control their mobility?

→ Monitor NRD generation from contrasting waste rock materials

Field barrel experiments

Field barrel experiments

49 different experiments (+blanks) with different waste rock types

Field barrel experiments

49 different experiments (+blanks) with different waste rock types:

Long-term drainage dynamics

5518 drainage samples!!

Long-term drainage dynamics

Appreciable As, Mo, Sb, Se also in circumneutral to slightly alkaline drainage from both NAG and PAG rock!

Timing of release: distinct reactivity between various waste-rock types ?

Waste rock type

 \diamond

pH-dependent metal(oid) mobilization:

Drainage chemistry vs. bulk composition

Highest NRD Se & Mo mobilization in skarn materials? Highest mobility of As & Sb in NRD from hornfels / marble?

Vriens et al., 2019, ACS Omega

Mineralogical composition; As-Sb

		intrusive (I9)	skarn (S10)	hornfels (H14)	marbles (M7)
	elem. content (mg/kg)	228	1050	289	73
arsenopyrite	FeAsS	23	11	<0.1	<0.1
realgar/orpiment	As_4S_4/As_2S_3	<0.1	<0.1	3	4
enargite/tennantite	Cu_3AsS_4 $Cu_{12}As_4S_{13}$	15	19	31	39
watanabeite	Cu ₄ (As,Sb) ₂ S ₅	6	22	14	10
As–Fe-(oxy)sulfates	(Fe,Cu,Pb,As)O(SO ₄)	59	24	45	33
As–Fe-carbonates	(Fe,Mn,As,Cr,Cu)CO ₃	<0.1	<0.1	6	7
As-fornacite	(Ca,Cu,Cr)(AsO ₄)(OH)	<0.1	35	1	7
	total	100	100	100	100
		intrusive (I9)	skarn (S10)	hornfels (H14)	marbles (M7)
	elem. content (mg/kg)	13	20	11	13
stibnite	Sb ₂ S ₃	36	43	23	17
watanabeite	Cu ₄ (As,Sb) ₂ S ₅	61	54	77	89
(Bi)stibiconite	(Bi,Fe)Sb ₃ O ₆	<0.1	<0.1	3	3
	total	100	100	100	100

Oxidation of primary As/Sb-sulfides

 ΔG°_{f} for oxidative dissolution Realgar and orpiment : -31 to -84 kJ/mol Arsenopyrite: -141 kJ/mol Enargite: -206 kJ/mol

> Spot 1 Spot 2 Spot 3 Sample from barrel M7 (marble) As < 0.1 10 7 200 µm C 47 56 < 0.1 0.2 0.2 Ca 19 Cu 29 20 16 2 Fe 26 2 8 8 0 1 7 S 26 10 Sb < 0.1 0.7 0.6 Si < 0.1 0.1 0.4 < 0.1 Zn 2 2 Total: 100 100 99.8

Faster dissolution of more labile sulfides in marble and hornfels?

Identification of relevant secondary phases

Sample from barrel M7 (marble)		Spot 1	Spot 2
Sample from barrer wir (marble)	S	<0.1	3
	Fe	1	2
	0	26	21
a state of the sta	Si	12	3
SIDO SIDO	Cu	18	20
Charles and the second second	Zn	13	6
	Mn	4	21
sbor 1 .	As	<0.1	7
	С	23	16
	Ca	0.3	1
	AI	1	<0.1
90 um	Mg	1	<0.1
	Total:	100	99

		intrusive (I9)	skarn (S10)	hornfels (H14)	marbles (M7)
	elem. content (mg/kg)	228	1050	289	73
As–Fe-(oxy)sulfates	(Fe,Cu,P ¹ , In)O(SO ₄)	59	24	45	33
As–Fe-carbonates	(Fe,Mn,As, ,,Cu)CO₃	:0.1	<0.1	6	7
As-fornacite	(Ca,Cu,Cr)(AsO₄)(OH)	<0.1	35	1	7
	tr.al	100	100	100	100

Mineralogical composition; Mo

		intrusive	skarn	hornfels	marble
	elem. content (mg/kg)	250	948	289	104
molybdenite	MoS ₂	97	91	98	86
Mo–Fe–(oxy)sulfates	(Fe,Cu,Mo,Zn,As)O(SO ₄)	3	4.8	0.3	6.2
Mo–fornacite	Pb ₂ ((Mo,Cr)O ₄)(AsO ₄)(OH)	<0.1	2.6	0.4	0.9
powellite	CaMoO ₄	<0.1	0.2	<0.1	1.6
wulfenite	PbMoO ₄	<0.1	0.2	<0.1	2.1
Mo–oxides	(Pb,Ca,Mo)O	<0.1	1.2	<0.1	3.1
	Total	100	100	100	100

Mineralogical composition; Se

Idem to Mo: consistent Se phases across rock types

		intrusive	skarn	hornfels	marble
	elem. content (mg/kg)	5	13	<2	3
Se-galena	Pb(Se,S)	99	99	100	100
Se-pyrite	Fe(Se,S) ₅	0.4	<0.1	<0.1	<0.1
Se-sulfosalts	(Cu,Pb,Fe)SeS	0.4	1	<0.1	<0.1
	total	100	100	100	100

Clausthalite [PbSe] or ferroselite [FeSe₂]?

Drainage composition: Se versus S

Waste rock S over Se : 10k-23k

Drainage S over Se: 30k-200k

→ Preferential retention of Se?

pH dependent mobility: adsorption

Electrostatic interaction between charged surface and charged ions/complexes

Various sorption models: diffuse/Stern layers on sorbent; inner- or outersphere complexation as f(hydration)

- Need to know aqueous speciation!
- Need to know mineral surface properties!

Adsorption of metal(oid)s

Protonation and redox equilibrium constants, stability constants for aqueous complexes are well-known!

In our case, the long-term drainage chemistry is also known! (*competition*)

Adsorption onto messy mineral phases

Surface properties of amorphous secondary mineral phases not known! (*RSA, sorption site density*)

Assumption: hydrous ferric oxide (Fe-OOH; model phase):

Adsorption modeling

Vriens et al., 2019, ACS Omega

Three different 'mobility' regimes:

- 1. Acidic (pH<3.5): <u>elevated</u> As, Sb, Mo, and Se mobility due to negligible adsorption and dissolution of Fe-oxides
- 2. Slightly acidic (3.5<pH<6): <u>low</u> As, Sb, Mo, and Se mobility due to effective retention by adsorption
- Circumneutral to slightly alkaline (6<pH<9): <u>elevated</u> As, Sb, Mo, and Se mobility due to negligible retention by adsorption and little secondary precipitation

What else can adsorption explain?

Fe-content in hornfels and marble lower than in intrusive and skarn \rightarrow lower abundance of potential sorption sites

High-alkalinity drainage from carbonate-rich rock enhances As mobility due to competitive occupation of sorption sites

Sorption edges of As, Mo, Sb, and Se appear similar despite different adsorption modes \rightarrow mobility controlled by surface properties rather than aqueous speciation

Practical implications

- Oxyanion-forming trace elements As, Sb, Mo, and Se can be released in the mg/L range from both NAG and PAG rock
- Their mobility is highest under circumneutral to slightly alkaline (6<pH<9) drainage conditions
- In addition to bulk content and waste rock reactivity, elementspecific mineralogy and adsorption phenomena provide clues to drainage dynamics

Open questions:

- Quantitative importance of sorption under oxygen-depletion?
 → Adsorption of reduced solutes completely different...
- Material heterogeneity: e.g., small-scale acidic zones under bulk-alkaline drainage pH
 - → Kinetics of precipitation and adsorption relative to drainage?

THE UNIVERSITY OF BRITISH COLUMBIA

Thank you!

Bas Vriens – Queen's University – <u>bas.vriens@queensu.ca</u> Roger Beckie – University of British Columbia BC MEND ML/ARD 2020