SECTION B.3

APPLYING RISK ASSESSMENT TO ARD

Keith Ferguson Placer Dome

APPLYING RISK ASSESSMENT TO ARD

A Work in Progress by K. Ferguson & G. Johnson

OBJECTIVES

- ✓ To show how risk assessment has been applied to ARD
- ✓ To identify possible opportunities for further applications
- √To get us all thinking about "risk" rather than "hazard"

THE RISK TRIPLET

- ✓What can happen?
 - What can go wrong?
- ✔ How likely is it?
 - What is the frequency/probability?
- ✓ What are the consequences?
 - What is the damage?
- ✓RISK # HAZARD

SOME SPECIFIC APPLICATIONS OF RISK ASSESSMENT TO ARD ✓ Project evaluations ✓ Regulatory/public approvals ✓ Engineering reliability analysis ✓ Ecological and human health risk assessment ✓ Closure cost analysis

SOME RISK ASSESSMENT TOOLS

- ✓ Screening matrix (fatal flaw analysis)
- √What if?
- ✓ Failure Mode and Effect Analysis
- √ Hazops
- ✓ Quantitative (sensitivity & probabilistic)

PROPERTY EVALUATIONS - SCREENING MATRIX

- ✓ Applicable to property acquisitions (fatal flaw analysis)
- ✓ Relatively little data available
- ✓ Need to identify order of magnitude costs and environmental risks
- ✓ Simple approach will usually be the most effective but may indicate need for more advanced techniques

ISSUES TO CONSIDER IN ASSESSING THE PROBABILITY OF ARD

- ✓ ABA %S and NP
- ✓ Proportion and tonnage in ABA categories
- ✓ Total quantity of material
- ✓ Kinetic factors including particle size, reactivity and slaking potential
- ✓ Potential management options

ISSUES TO CONSIDER IN ASSESSING CONSEQUENCES OF ARD

- ✓ Strength of ARD
- ✓ Metals of concern toxicity ranking
- ✓ Volume of ARD
- ✓ Dilution and buffering capacity
- ✓ Value and proximity of aquatic resources
- ✓ Potential for human effects (drinking water)
- ✓ Regulatory standards

	THE	LIKELIHOOD MATRIX
*	Likelihood	Examples of Data
	1. Will Occur	 ABA indicates strong ARD and high snow/rain climate
	2. Likely	 ABA indicates moderate ARD; high metal leaching potential
	3. Might	 ABA indicates moderate ARD with long lag or semi-arid climate
	4. Unlikely	 ABA indicated moderate ARD but kinetic indicates unreactive sulphides
	5. Will not Occur	 ABA indicates unlikely ARD and/or desert climate and/or underwater disposal
		underwater disposal

C	ONSEQUE	NCE MATRIX
Consequences	Cost	<u>Examples</u>
1. Severe	>\$20 M	Metals and acid reach large river with significant fish
2. Significant	\$10 – \$20 M	· · · · · · · · · · · · · · · · · · ·
3. Moderate	\$5 – \$10 M	 Copper in short section of river above aquatic stnd.
4. Minimal	\$1 – \$5 M	 Small surface seeps to nearby creek exceed criteria
5. No Impact	<\$1M	 Small visually discoloured seeps but no sign. impact

» •	THE PDI	***************************************			
** **	1 4	1	equence		
# %	1	2	3	4	5
» 1	1	2	4	7	11
	3	5	8	12	16
₹ <mark>3</mark>	6	9	13	17	20
4	10	14	18	21	23
» <u> </u>	15	19	22	24	25

RISK EVALUATION MATRIX						
	Risk Range	<u>Outcome</u>				
	1-10	Issue must be resolved prior to proceeding with project.				
	11-19	Action/contingency plan required to address issue. Proceed with project.				
	20-25	No immediate action required. Proceed with project. Verify assumptions with monitoring.				

FE

ENGINEERING RELIABILITY ASSESSMENT -FMEA

- ✓ Applicable to detailed design and operations
- ✓ Objective to improve reliability of ARD control
- ✓ Examine design, operation and maintenance from a "failure" point of view
- ✓ Risk triplet of:
 - What can go wrong?
 - What is the probability of it going wrong?
 - What are the consequences of it going wrong?
- ✓ Recommendations:
 - What can be done to reduce the probability or the consequences of failure?

	FM			_	ENGINE		+
		REL	.IABILIT	Y AS	SESSME	NT	
*							
			-				
Component/ Phase	Faiture: Modes	Consequence g.u.u.u.v. V)	Com mants	Failure Likeli bood \$ 11,111,1V/V)		Compensating Fa (Secondary Conts) Monitoring and centing	nment Ri
Ditté Secé es 1. Southern Tall	1.1 Excertal/a Procipitation 1.2 (ce Diocitage 1.3 Geoptiga Loca	tie#	posity not bed and whold be titled water quality not had as pect low yourse of esspage		relatively low flow XI section of dish- potential blockage at ST pand. posedce loss to Gelfy Creek	Partial - North entronly dope on his donates to sport ongoing maintenance periods monitoring of Geny Cre-	3 2
	1.4 Shughing Blor lage 1.5 Extinguate 1.6 De eraten sikin break 1.7 Station	II II IIo II	water quality not bed water quality not bed bushly not bed and would be disk posity not too bad and Selly slow	P 10 M I 10 M ed B to M	some stoughtage at one local lon tow defrougate zone ; possible storpol dich researchele condition except low ex- relatively filts all from one	continue to percent make tel	4. 4. 2.

CLOSURE COST ANALYSIS - QUANTITATIVE (SENSITIVITY) MODEL

- ✓ Construct water and contaminant balance to predict short term concentrations and flows from waste rock dumps
- ✓ Calibrate to recent historical concentrations and loadings
- ✓ Calculate lime requirements
- ✓ Make medium to long-term lime use assumptions
- ✓ Add fixed and variable costs

ECOLOGICAL RISK ASSESSMENT - QUANTITATIVE (PROBABILISTIC) MODEL

- ✓ Applicable to detailed design and operations
- ✓ Proposal to significantly expand open pit operation with two different dumping options
- ✓ significant proportion of rock potentially acid
 generating
- ✓ test pads confirmed ARD potential
- ✓ very high neutralization potential
- high dilution and neutralization potential in receiving streams

WASTE ROCK MODEL

- ✓ Divides rock into acid forming, neutral and neutralizing by lithologies
- ✓ Rough schedule of production
- ✓ Considers construction/dumping schedule
- ✓ Considers exposure time
- ✓ Critical parameters are surface areas of dump versus time, amount of potentially acid generating material, diffusivity, sulphide oxidation rates and metal/sulphate relationships

WATER BALANCE MODEL

- ✓ Waste rock model provides source terms
- ✓ Simple dilution model to predict downstream concentrations based on source and background loadings
- ✓ Based on measured and calculated flows (eg. based on catchment areas)
- ✓ Based on actual concentrations and derived/assumed values
- ✓ Verified using measured concentrations for 1997
- ✓ Modelled annual average concentrations

} }	MANAGEMENT OPTIONS								
Option/ Measure	<u>M2</u>	<u>M1</u>	<u>M0</u>	<u>G2</u>	<u>G1</u>	<u>G0</u>			
Material Management	Yes	Yes	Yes	Yes	Yes	Yes			
Compaction & Covers	No	Yes	Yes	No	Yes	Yes			
Level of Diligence	Mod.	High	V. High	Mod.	High	V. Hig			
* * *									

SUMMARY OF RESULTS

- ✓ Relatively little difference between waste dump construction options
- ✓ Management plans are required to meet standards:
 - material management involving identification, segregation and special placement especially for outer faces of dumps
 - covers for outer face
 - compaction of problematic layers
 - a relatively high level of diligence
- ✓ With these measures there is a high probability of a "walk away" closure

CONCLUSIONS

- ✓ Risk assessment can be applied to many different types of ARD problems
- ✓ Begun to develop more sophisticated applications
- ✓ Just begun to tap the capabilities
- ✓ Need more information to "calibrate" approaches
- ✓ Risk assessment really does help us towards ARD "enlightenment"