SECTION B.3 # APPLYING RISK ASSESSMENT TO ARD Keith Ferguson Placer Dome # APPLYING RISK ASSESSMENT TO ARD A Work in Progress by K. Ferguson & G. Johnson ### **OBJECTIVES** - ✓ To show how risk assessment has been applied to ARD - ✓ To identify possible opportunities for further applications - √To get us all thinking about "risk" rather than "hazard" ### THE RISK TRIPLET - ✓What can happen? - What can go wrong? - ✔ How likely is it? - What is the frequency/probability? - ✓ What are the consequences? - What is the damage? - ✓RISK # HAZARD # SOME SPECIFIC APPLICATIONS OF RISK ASSESSMENT TO ARD ✓ Project evaluations ✓ Regulatory/public approvals ✓ Engineering reliability analysis ✓ Ecological and human health risk assessment ✓ Closure cost analysis ### **SOME RISK ASSESSMENT TOOLS** - ✓ Screening matrix (fatal flaw analysis) - √What if? - ✓ Failure Mode and Effect Analysis - √ Hazops - ✓ Quantitative (sensitivity & probabilistic) # PROPERTY EVALUATIONS - SCREENING MATRIX - ✓ Applicable to property acquisitions (fatal flaw analysis) - ✓ Relatively little data available - ✓ Need to identify order of magnitude costs and environmental risks - ✓ Simple approach will usually be the most effective but may indicate need for more advanced techniques # ISSUES TO CONSIDER IN ASSESSING THE PROBABILITY OF ARD - ✓ ABA %S and NP - ✓ Proportion and tonnage in ABA categories - ✓ Total quantity of material - ✓ Kinetic factors including particle size, reactivity and slaking potential - ✓ Potential management options # ISSUES TO CONSIDER IN ASSESSING CONSEQUENCES OF ARD - ✓ Strength of ARD - ✓ Metals of concern toxicity ranking - ✓ Volume of ARD - ✓ Dilution and buffering capacity - ✓ Value and proximity of aquatic resources - ✓ Potential for human effects (drinking water) - ✓ Regulatory standards | | THE | LIKELIHOOD MATRIX | |---|-------------------|---| | * | Likelihood | Examples of Data | | | 1. Will Occur | ABA indicates strong ARD and
high snow/rain climate | | | 2. Likely | ABA indicates moderate ARD;
high metal leaching potential | | | 3. Might | ABA indicates moderate ARD with
long lag or semi-arid climate | | | 4. Unlikely | ABA indicated moderate ARD but
kinetic indicates unreactive
sulphides | | | 5. Will not Occur | ABA indicates unlikely ARD
and/or desert climate and/or
underwater disposal | | | | underwater disposal | | C | ONSEQUE | NCE MATRIX | |----------------|--------------------|--| | Consequences | Cost | <u>Examples</u> | | 1. Severe | >\$20 M | Metals and acid reach large
river with significant fish | | 2. Significant | \$10 – \$20 M | · · · · · · · · · · · · · · · · · · · | | 3. Moderate | \$5 – \$10 M | Copper in short section of
river above aquatic stnd. | | 4. Minimal | \$1 – \$5 M | Small surface seeps to
nearby creek exceed criteria | | 5. No Impact | <\$1M | Small visually discoloured
seeps but no sign. impact | | | | | | »
• | THE PDI | *************************************** | | | | |------------------|---------|---|---------|----|----| | **
** | 1 4 | 1 | equence | | | | #
% | 1 | 2 | 3 | 4 | 5 | | » 1 | 1 | 2 | 4 | 7 | 11 | | | 3 | 5 | 8 | 12 | 16 | | ₹ <mark>3</mark> | 6 | 9 | 13 | 17 | 20 | | 4 | 10 | 14 | 18 | 21 | 23 | | » <u> </u> | 15 | 19 | 22 | 24 | 25 | | RISK EVALUATION MATRIX | | | | | | | |------------------------|------------|---|--|--|--|--| | | Risk Range | <u>Outcome</u> | | | | | | | 1-10 | Issue must be resolved prior to proceeding with project. | | | | | | | 11-19 | Action/contingency plan required to address issue. Proceed with project. | | | | | | | 20-25 | No immediate action required. Proceed with project. Verify assumptions with monitoring. | | | | | # FE # ENGINEERING RELIABILITY ASSESSMENT -FMEA - ✓ Applicable to detailed design and operations - ✓ Objective to improve reliability of ARD control - ✓ Examine design, operation and maintenance from a "failure" point of view - ✓ Risk triplet of: - What can go wrong? - What is the probability of it going wrong? - What are the consequences of it going wrong? - ✓ Recommendations: - What can be done to reduce the probability or the consequences of failure? | | FM | | | _ | ENGINE | | + | |-----------------------------------|--|------------------------------|---|---|--|--|----------------| | | | REL | .IABILIT | Y AS | SESSME | NT | | | * | | | | | | | | | | | | - | | | | | | Component/
Phase | Faiture: Modes | Consequence
g.u.u.u.v. V) | Com mants | Failure
Likeli bood
\$ 11,111,1V/V) | | Compensating Fa
(Secondary Conts)
Monitoring and centing | nment Ri | | Ditté Secé es
1. Southern Tall | 1.1 Excertal/a Procipitation
1.2 (ce Diocitage
1.3 Geoptiga Loca | tie# | posity not bed and whold be titled
water quality not had
as pect low yourse of esspage | | relatively low flow XI section of dish-
potential blockage at ST pand.
posedce loss to Gelfy Creek | Partial - North entronly
dope on his donates to sport
ongoing maintenance
periods monitoring of Geny Cre- | 3
2 | | | 1.4 Shughing Blor lage
1.5 Extinguate
1.6 De eraten sikin break
1.7 Station | II
II
IIo II | water quality not bed
water quality not bed
bushly not bed and would be disk
posity not too bad and Selly slow | P 10 M
I 10 M
ed B to M | some stoughtage at one local lon
tow defrougate zone ; possible storpol
dich researchele condition except low ex-
relatively filts all from one | continue to percent make tel | 4.
4.
2. | # CLOSURE COST ANALYSIS - QUANTITATIVE (SENSITIVITY) MODEL - ✓ Construct water and contaminant balance to predict short term concentrations and flows from waste rock dumps - ✓ Calibrate to recent historical concentrations and loadings - ✓ Calculate lime requirements - ✓ Make medium to long-term lime use assumptions - ✓ Add fixed and variable costs # ECOLOGICAL RISK ASSESSMENT - QUANTITATIVE (PROBABILISTIC) MODEL - ✓ Applicable to detailed design and operations - ✓ Proposal to significantly expand open pit operation with two different dumping options - ✓ significant proportion of rock potentially acid generating - ✓ test pads confirmed ARD potential - ✓ very high neutralization potential - high dilution and neutralization potential in receiving streams ### **WASTE ROCK MODEL** - ✓ Divides rock into acid forming, neutral and neutralizing by lithologies - ✓ Rough schedule of production - ✓ Considers construction/dumping schedule - ✓ Considers exposure time - ✓ Critical parameters are surface areas of dump versus time, amount of potentially acid generating material, diffusivity, sulphide oxidation rates and metal/sulphate relationships ### **WATER BALANCE MODEL** - ✓ Waste rock model provides source terms - ✓ Simple dilution model to predict downstream concentrations based on source and background loadings - ✓ Based on measured and calculated flows (eg. based on catchment areas) - ✓ Based on actual concentrations and derived/assumed values - ✓ Verified using measured concentrations for 1997 - ✓ Modelled annual average concentrations | }
} | MANAGEMENT OPTIONS | | | | | | | | | |-----------------------|--------------------|-----------|-----------|-----------|-----------|-----------|--|--|--| | Option/ Measure | <u>M2</u> | <u>M1</u> | <u>M0</u> | <u>G2</u> | <u>G1</u> | <u>G0</u> | | | | | Material Management | Yes | Yes | Yes | Yes | Yes | Yes | | | | | Compaction & Covers | No | Yes | Yes | No | Yes | Yes | | | | | Level of
Diligence | Mod. | High | V. High | Mod. | High | V. Hig | | | | | *
*
* | | | | | | | | | | ## **SUMMARY OF RESULTS** - ✓ Relatively little difference between waste dump construction options - ✓ Management plans are required to meet standards: - material management involving identification, segregation and special placement especially for outer faces of dumps - covers for outer face - compaction of problematic layers - a relatively high level of diligence - ✓ With these measures there is a high probability of a "walk away" closure ### **CONCLUSIONS** - ✓ Risk assessment can be applied to many different types of ARD problems - ✓ Begun to develop more sophisticated applications - ✓ Just begun to tap the capabilities - ✓ Need more information to "calibrate" approaches - ✓ Risk assessment really does help us towards ARD "enlightenment"