B.4. Segregation of ARD Tailings at the Duthie Mine

by Clint Logue, Iain Bruce BGC Engineering Inc.

and Max Holtby Silver Standard Resources Inc.

. . Variation and ٢... ا - Constitution and

Segregation of ARD Tailings at the Duthie Mine

An Observational Approach to ARD Mitigation

by

Clint Logue, Dr. Iain Bruce BGC Engineering Inc.

and

Max Holtby
Silver Standard Resources Inc.

Presentation Outline

- Site Location
- Site History
- Site Description
- Description of ARD Problem
- Proposed Mitigation
- Numerical Modeling
- Site Remediation to Date Photographs From Site Clean-Up

Duthie Mine - Site Location

Duthie Mine - Mining History

- Mineralization discovered in 1908
- Property changed hands 6 times Since 1922
- Mining operations by numerous parties
- Property acquired by Silver Standard Resources Inc. in 1978
- In total approximately 26,000 m³ Tailings ~ 4,000 m³ Since 1978

Duthie Mine - Site Layout

Duthie Mine - Project History

1952 - Mill Operated by Sil-Van Consolidated Mining and Milling Company Ltd.

Duthie Mine - Project History

1994 - Aerial Shot of Tailings Facility

Duthie Mine - Project History

- 1982 Permit Application prompts Water Quality Monitoring by Government Agencies
- 1987 Partial Remediation of "Spilled" Tailings by B.C. Ministry of Energy and Mines
- Deemed as a Source of Heavy Metal Contamination
- Silver Standard Resources Inc. Requested to Define Extent of Contamination and Ascertain Methods of Mitigation

Duthie Mine - Project History

- 1993 Silver Standard Began Site Investigation
- GeoViro Engineering Ltd. Retained to Establish Water Quality Monitoring Program
- BGC Engineering Inc. Retained to Provide Geotechnical Input for Mitigation Investigations Undertaken by Silver Standard

Duthie Mine - Stratigraphy

- Sand and Gravel Tailings (0 m to the South, \sim 3 m to the North)
- Underlain by Glacio-Fluvial Sands and Gravels (0 m to the South, ~ 5 m to the North)
- Underlain by Glacial Till (High Plastic, Clayey Silt with Trace Sand)
- Glacial Till is quite variable Sand and Gravel seams identified.

Duthie Mine - Groundwater

- Piezometers Indicate that Groundwater is Highly Variable
- Water Table Responds Quickly to Precipitation Events
- Top 0.5 m Tails Oxidized Rest Stay Saturated

Duthie Mine - ARD Problem

- Mining Operations undertaken with no regard to closure
- 26,000 m³ of tailings sporadically placed over an estimated area of 40,000 m²
- Water Flushing Through Tailings Sources:
 Direct Precipitation
 Seepage through Glacio-Fluvial Sands and Gravels

Duthie Mine - Proposed Mitigation

- Diversion Ditch to prevent Seepage from Glacio-Fluvial Sands and Gravels
- Cover to prevent Direct Precipitation

 Tailings will stay Saturated Cover to be Designed at a

 Later Date

Duthie Mine - Proposed Mitigation

Duthie Mine - Numerical Modeling

- Steady-State Finite Element Model Tool to indicate effectiveness of Mitigation
- Hydraulic Conductivities based on index tests (grain size, etc)

Tails -

 $K = 1 \times 10^{-5} \text{ m/s}$

Glacio-Fluvial

 $K = 1x10^{-3} \text{ m/s}$

Glacial Till

 $K = 1 \times 10^{-8} \text{ m/s}$

• Boundary Conditions based on Precipitation Data Average Wet Conditions

Duthie Mine - Seepage Model Stratigraphy and Boundary Cond.

Duthie Mine - Seepage Model Mitigation Implemented - Results

Duthie Mine - Modeling Results

 Modeling demonstrated that seepage through the tailings facility can be reduced by 95% by implementing Cover and Diversion Ditch

Duthie Mine - Limitations of Modeling

- FEM is only a predictive tool
- Ability to model exceeds site-specific information
- Need for Water Balance for Model Calibration

Duthie Mine - Mitigation

- Phased-Construction
 - Allow Water Balance for Model Calibration Better Identify Source of Contamination
- Clean up Tails and Construct Diversion Ditch
- Separate Flows for Measurement and Treatment

1952 - Mill Operated by Sil-Van Consolidated Mining and Milling Company Ltd.

1994 - Aerial Shot of Mill

1994 - Aerial Shot of Tailings Facility

Typical Old Workings Prior to Clean-Up

Typical Old Workings After Clean-Up

Completed Form Ready for Pour

Form After Pour

Finished Cap

Typical Weir at Site

North End of Tailings Facility Before (Above) and After (Right) Clean-Up

BGC ENGINEERING INC.
AN APPLIED EARTH SCIENCES COMPANY

į. L., j