D.5 Arsenic Remobilization: Geochemical Controls, Case Histories and Prediction

Y.T. John Kwong

CANMET - MMSL

[____

Geochemical Controls

- Solubility of secondary & Tertiary arsenates
- As(V)-As(III) conversion in the "geochemical rubber band"
- Schurmann's solubility series
- Galvanic interaction
- Carbonation reactions

		of Some A	
Metal A	rsenate	Log ₁₀ Ksp	Moles/Litre
Ca ₃ (AsO ₄	1)2	-18.2	8.98 x 10 ⁻⁵
Ba₃(AsO₄)2	-50.1	3.74 x 10 ⁻¹¹
Zn ₃ (AsO ₄)2	-27.9	1.03 x 10 ⁻⁶
FeAsO ₄		-20.2	7.94 x 10 ⁻¹¹
Co ₃ (AsO ₄	3)2	-28.1	9.40 x 10 ⁻⁷
Ni ₃ (AsO ₄)	2	-25.5	3.11 x 10 ⁻⁶
Cu ₃ (AsO		-35.1	3.74 x 10 ⁻⁸
AlAsO4	•	-15.8	1.26 x 10 ⁻⁸

Sulfide Stabili	ity Sequence (So	churmann, 1888)
Ion affinity for S	Metal	Sulfide Solubility
High	Palladium Mercury Silver Copper Bismuth Cadmium Antimony Tin Lead Zinc Nickel Cobalt Iron Arsenic Thallium	Low
Low	Manganese	High

Arseno-Carbonate Complexes

- Kim et al. (2000) found that As release from the Marshall sandstone varied directly with the bicarbonate concentration
- Carbonation of As₂S₃ and As₂S₂ is an important leaching process under anaerobic conditions
- As(CO₃)₂, As(CO₃)(OH)₂ and AsCO₃ are stable in groundwater

Canada

Case Histories

- Mount Washington, Vancouver Island, B.C.
 - As mobilization and ARD
- High-grade uranium mines, northern Saskatchewan
 - · As levels in basic tailings porewaters
- Former Cobalt Mining Camp, Ontario
 - As mobilization and attenuation in near-neutral drainage

Canada

Some As-Related Observations at Mt. Washington

- As-minerals include arsenopyrite, scorodite, realgar, amorphous Cu-AsO₄ compound in green stream
- Low As levels (<0.1 0.5 mg/L) in both surface and ground waters
- Green stream in South Pit with neutral toslightly basic pH has higher dissolved As than most acidic drainage in North Pit
- Pyrrhotite Lake (pH 4.6-4.9) gave <0.06 mg/L As but sediment contained up to 2310 ppm As (1997 data)

Canada

Factors Controlling As Mobility at Mt. Washington

- High sorption affinity of ferrihydrite for As, ~1 mole As / mole Fe (Pierce and Moore, 1982)
- Stability of trace metal arsenates at slightly basic pH conditions
- (Thus no As remobilization observed when lime was added to Pyrrhotite Lake sediment to bring leachate pH to near-neutral values in a batch test)

Arsenic Issue with Uranium Mining in Saskatchewan

- Many high-grade deposits (e.g., Key Lake, Rabbit Lake, Collins Bay, McClean Lake and Midwest) also host arsenide mineralization
- Proposed control of tailings porewater As at 1 mg/L for the McClean Lake Operation has received much scrutiny
- In situ porewater As analysis at Rabbit Lake gave 6-132 (1993/4) and 0.06-85 (1997) mg/L, at Key Lake, 3.5-29 mg/L
- Reverse osmosis is relied upon to bring As level to acceptable levels prior to discharge

Canada

Rabbit Lake In-Pit Tailings Facility

(with chemical data from Moldovanet al., 2000)

- 425 x 300 x 98 m³; 15 years history; 4.6M tonnes to Sept. 1999
- Tailings composed of residues from ore leach process and precipitates from acid neutralization (88% As in arsenates, 12% in arsenides/sulfides)
- Porewater analyses
 - pH: 8.4 11.1; Eh: -64 268 mV; T= 0 6.5°C
 - As: 0.2-140 mg/L with 11% in trivalent state; highest value measured at a depth of 59 m

Prediction of Arsenic Leaching Prerequisites

- Material characterization
 - primary and secondary minerals or tertiary products
- Geological setting
 - associated minerals
 - geology of drainage basin
- Environmental setting
 - pH, Eh, availability of sorption sites (clays, Fe-oxides)
 - site hydrology

Canada

Prediction of Arsenic Leaching Methods and Limitations

- Use of solubility data
 - equilibrium may not occur (thus over-estimate)
 - complications resulting from solid solutions
- Geochemical modeling
 - incomplete data base
 - galvanic interaction not considered
- "Educated guess" based on monitoring results
 - sensible perhaps but relatively expensive

Canada

Observed As Levels in Natural Drainage

pΗ	Other Conditions	mg/L As
pH ≤ 2.5	Oxic	1 ->100
pH > 8.5	Oxic or reducing	1 -> 100
Mildly acidic to basic	Oxidic, Fe-oxide rich Oxidic, no Fe-oxide Reducing	0.x 0.x – 10x 1 - >100

Canada

Concluding Remarks

- An integrated approach is required to
 - predict arsenic leaching
 - manage As-bearing mine waste
 - subaqueous versus subaerial disposal
 - separate versus co-disposal