

MINING

Samatosum Division

MINING

Samatosum Division

Matt Bliss, Brent Hamblin, Dick Ross, and Craig Ford

Opening Comments:

- The Samatosum Division tailing water cover has performed well since installed in 1995
- Tailings water covers are not totally maintenance-free
- For INMET however, the risk associated with this solution is better than AD treatment

Presentation Outline

- Samatosum Division Overview
 - Mine description and property chronology
 - Tailings description
- Water Quality Review
 - Tailings pond
 - Seepage
- Future Considerations: On-site and Elsewhere
 - Characteristics affecting tailings water cover success

Samatosum Division: Pit, Waste Rock, Plant. Photo looking east

Samatosum Division: Plant, Surge, Sludge and Sed Ponds. Photo looking west.

The Samatosum Tailings Water Cover: Six Years of Success Samatosum Division:

Air Photo of Sedimentation Pond, Old Mill Site, Tailings Pond and Access Road

~1.5 km x 1.0 km

- Ag-Pb-Zn-Cu Mine: 1989-1992
 - 350-500 tpd pit and underground mine, 566 Kt
 - 3-concentrate floatation (tetrahedrite, galena, sphalerite), 50-60% passing 200 mesh (coarse)
 - 3,014,000 m³, or 8.14 Mt waste rock, layered
 - 422,462 m³, or 542 Kt, sub-aqueous tailings
 - 90% recycle, high pH slurry, effluent treatment
 - 50-60% runoff, 850 mm annual precipitation

- Chronology:
 - 1989 May opened
 - 1992 September closed
 - 1992-1993 tailings re-distributed to < 1134 m
 - 1992-1993 in-situ ferric sulphate treatment: Mo, Sb
 - 1994 tributary diversion re-routed to impoundment
 - 1995 compliant tailings pond supernatent overflow
 - 1996 wasterock and pit drainage treatment plant
 - 1998 HDS treatment plant upgrade

- Tailings:
 - 25 m H x 250 m L earthen dam, 1 L/s seepage
 - 10 ha pond, 20 ha catchment --> 260 ha catchment,
 2 m water cover typical (1 m minimum design)
 - Potentially acid generating tailings at 1:1.6 AP/NP
 - 10% pyrite, 3.9% S, 0.8% Zn, 8.75 paste pH

Samatosum Tailings: ABA Quarterly Composite Data						
<u>Sample</u>	<u>Sulphur</u>	<u>Paste pH</u>	<u>AP</u>	<u>NP</u>	<u>NNP</u>	<u>AP/NP</u>
Q2 1989	3.35	8.60	102.50	50.00	(52.50)	2.05
Q3 1989	3.07	8.20	93.90	40.70	(53.20)	2.31
Q3 1989	3.97	8.40	121.50	61.70	(59.80)	1.97
Q4 1989	3.58	8.90	109.50	81.80	(27.70)	1.34
Q1 1990	3.24	8.70	99.10	103.10	4.00	0.96
Q2 1990	3.39	8.00	103.70	100.00	(3.70)	1.04
Q3 1990	4.01	8.50	122.70	86.70	(36.00)	1.42
Q4 1990	4.07	8.60	124.50	110.00	(14.50)	1.13
Q1 1991	4.57	9.70	139.80	92.60	(47.20)	1.51
Q2 1991	4.78	9.30	146.30	76.40	(69.90)	1.91
Q3 1991	4.44	8.90	135.90	93.80	(42.10)	1.45
Q4 1991	4.56	9.20	139.50	122.30	(17.20)	1.14
Avg	3.92	8.75	119.91	<mark>84.93</mark>	(34.98)	1.52

Presentation Outline

- Samatosum Division Overview
 - Mine description and property chronology
 - Tailings description
- Water Quality Review
 - Tailings pond
 - Seepage
- Future Considerations: On-site and Elsewhere
 - Characteristics affecting tailings water cover success

Water Quality - Tailings Pond: Overflow Spillway. Photo looking northeast.

Tailings Pond Surface Water Quality: MOE-10 - Sulphate and pH

Tailings Pond Surface Water Quality: MOE10 - Zinc and Manganese

Tailings Pond Water Quality: MOE-10 - Molybdenum and Selenium

Water Quality - Seepage Pond: Photo looking northwest.

Water Quality - Tailings Seepage Pond: Overflow. Photo looking east. The Samatosum Tailings Water Cover: Six Years of Success

Tailings Seepage Collection Pond Water Quality:

MOE-2 Zinc and Manganese

Tailings Seepage Collection Pond Water Quality: MOE-2 Molybdenum and Selenium

Tailings Groundwater Quality: MH-8901 and MH-8902 - Sulphate and pH

Tailings Groundwater Quality: MH-8902 - Zinc and Manganese

Presentation Outline

- Samatosum Division Overview
 - Mine description and property chronology
 - Tailings description
- Water Quality Review
 - Tailings pond
 - Seepage

• Future Considerations: On-site & Elsewhere

 Characteristics affecting tailings water cover success

Considerations for Success

Site characteristics that affect the performance of a tailings water cover can be either elements of:

- Design, or
- Operations, or
- Mitigation and Rehabilitation.

Considerations for Success

- Impoundment characteristics
 - area, topography, climate (seasonal variation, wind)
 - watershed and flow-through
- Tailings characteristics
 - grain size, degree of oxidation
 - mineral content, pore water (process) chemistry
- Water cover characteristics
 - inflow chemistry, substrate (organic, carbonate, sediments), ecological systems

Collaborative Investigations?

- Characterize successes and failures of tailings water covers relative to:
 - inflow chemistry, hydraulics and contaminant flux
 - substrate composition and thickness
 - substrate disruption (wave action, burrowers, plants)
 - substrate and pond ecosystem (algae, plants, invertebrates, fish and waterfowl) benefits and challenges

Closing Comments:

- The Samatosum Division tailing water cover has performed well since installed in 1995
- Tailings water covers are not totally maintenance-free
- For INMET, the risk associated with this solution is better than AD treatment

