MiMi

Establishment of Vegetation on Water Covered Mine Wastes – Integration in the Performance Assessment Framework

> **Eva Stoltz^{1,a} and Maria Greger^a** Lars Olof Höglund^b

^aDepartment of Botany, Stockholm University S-106 91 Stockholm, SWEDEN ¹eva.stoltz@botan.su.se ^bKemakta Consultants Co.

The MiMi Programme

- An integrated research programme
- Funded by MISTRA, the Swedish Foundation for Strategic Environmental Research and the Swedish Mining Industry
- Six Universities, The Mining Industry, Consultants
- Fundings for 1997 2003 about 11 million CAD

MiMi - Objectives

- Safe methods for remediation of mining waste
- Reliable prediction of the long-term performance
- Challenge
 - economically and environmentally efficient solutions
 - meet future demands

MiMi - Problem description

• Key issues:

- Mine waste often contains metal sulphides
- Sulphides oxidise when exposed to oxygen and water
- Oxidation creates an acidic, metal-laden leachate
- Leachate generation over long time
- How can we assess the performance of a proposed disposal design over a period of time that by far exceeds the period for which experimental evidence can be provided?

MiMi - Demands on preventive measures

- Long functional life-time required
- Constructions robust and stable
- Crucial to demonstrate the longevity in a solid scientific way
- Relevant time-scales are hundreds thousands of years

MiMi - Structuring

- A simple and robust methodology -Performance assessment
- Based on fundamental and wellestablished scientific principles
 - thermodynamics
 - mass-balances
- Developed & extensively applied within radioactive waste management

MiMi - Working strategy

MiMi - Causes and remedies - AMD

Performance Assessment -Water Covered Tailings

Establishment of Vegetation on Water Covered Tailings

- Current Research Activities and Results

Plant establishment on water covered mine wastes might reduce the oxidation of sulphide minerals due to the production of an organic oxygen barrier

Aims:

- 1. To find suitable low-cost amendments for plant establishment
- 2. To find the effects of plant establishment on metal release, pH and SO₄

Amendments for plant establishment

Plant growth on different waste products was investigated

- Sewage sludge
- Bio sludge
- Ash
- Green liquor dregs
- Peat

- •Sewage sludge + ash
- •Sewage sludge + ash + peat

Eriophorum angustifolium (Common cottongrass)

Effects of wetland-plant growth

OR

Plant species studied

Eriophorum angustifolium (Common Cotton grass)

	pН	SO_4	Cd	Cu	Pb	Zn
		$(mg l^4)$	$(\mu g l^4)$	$(\mu g m l^4)$	$(\mu g l^4)$	$(\mu g ml^4)$
Control	2.6 b	1137 <mark>a</mark>	435 <mark>a</mark>	3.21 <mark>a</mark>	8134 <mark>a</mark>	123 <mark>a</mark>
Sewage sludge	2.8 b	394 b	29b	0.30b	5864 <mark>a</mark>	5 b
E. angustifolium	5.9 <mark>a</mark>	608 b	6b	0.04b	92 b	6b
+ sewage sludge						

¹Different letters (a and b) indicate significant difference between the various treatments

Effects of *Eriophorum angustifolium* on drainage water from water covered wastes amended with sewage sludge compared with controls

Metal content: decreased pH: increased (plants:~5.7, control:~2.6) SO₄: decreased

Conclusions

Sewage sludge is suitable as amendment supply for plant establishment on water covered wastes

Metal levels and SO₄ of the drainage water are decreased and pH is increased by *E. angustifolium* and sewage sludge

Vegetation may have an important role in the Performance Assessment Framework

 It is necessary to find solutions that work coherently with nature in the long-term perspective

MiMi - Vegetation test field

MiMi - Vegetation test field

Plant species used in the test field, from the left:

Carex rostrata (Bottle sedge)

Eriophorum angustifolium (Common cottongrass)

Phragmites australis (Reed)

MiMi - Field studies of Wetland systems

