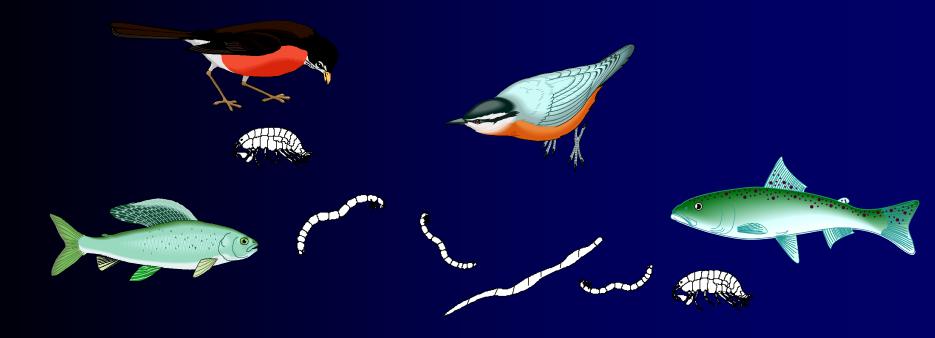
Application of Ecological Risk Assessment to Water-Covered Mine Wastes Gary Mann (ECOmetrix/EVS) Randy Baker (Aqualibrium/EVS)

Overview

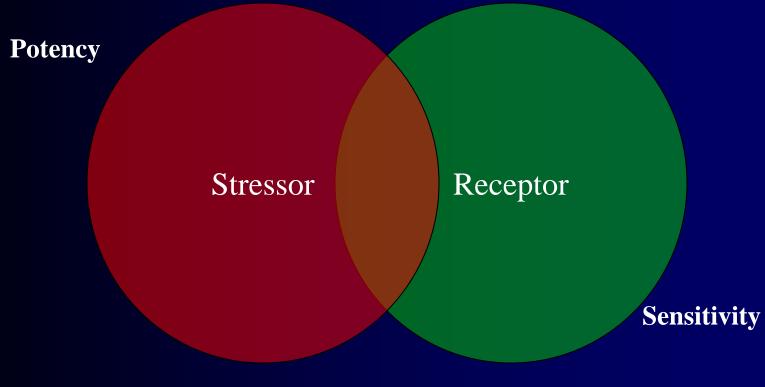

- Ecological Risk Assessment
 - Framework
 - Tools
- Field Application of ERA Tools

 Bluebell Mine, BC

What is Ecological Risk Assessment?

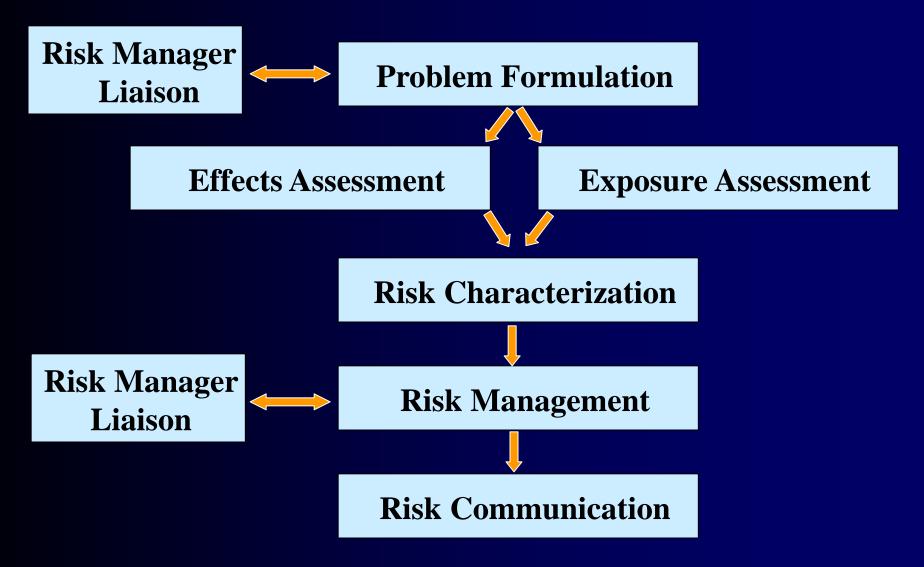
Definition

"A tool that evaluates the <u>likelihood</u> that unacceptable adverse ecological <u>effects</u> may occur or are occurring as a result of exposure to one or more <u>stressors</u>."



Magnitude of
Adverse Ecological
EffectsProbability of Adverse
Ecological EffectsRISKMagnitude of
Adverse Ecological EffectsXBrobProbability of Adverse
Ecological EffectsBrobProbability of Adverse
Ecological EffectsCuPbAsKHgKKK<t

Key ERA Terminology


- <u>Stressor</u> entity (chemical, biological, physical) with potential to cause adverse ecological effects.
- <u>Receptor</u> ecological resource (individual, population, community, habitat) potentially affected by stressor.
- <u>Exposure</u> contact between a stressor and a receptor.

Requirements for Risk

Bioavailability

Ecological Risk Assessment Framework

ERA Framework

Risk Manager Liaison

Problem Formulation

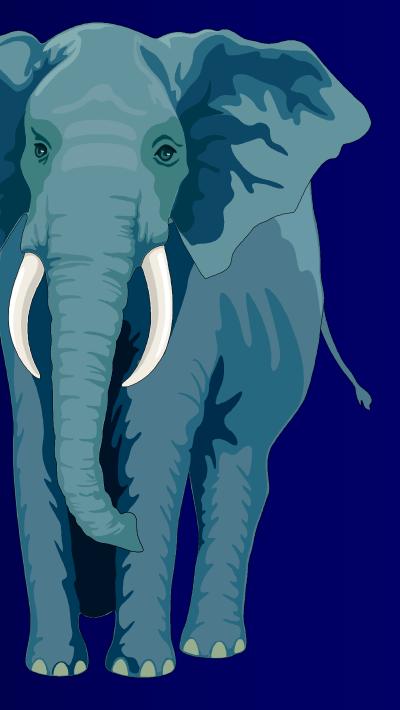
Problem Formulation

Problem formulation sets the stage for the entire ERA process

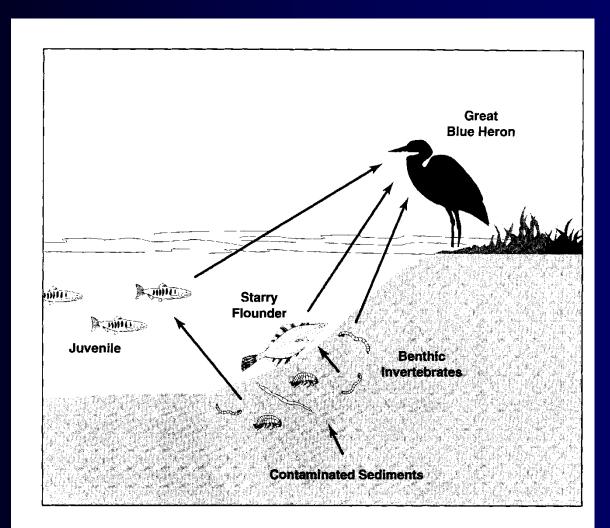
- systematic planning helps identify the major factors that need to be considered
- both risk assessors and risk managers should be involved
- defines protection goals (human values) for the environment
- documents the ERA process

Protection Goals: Big Picture

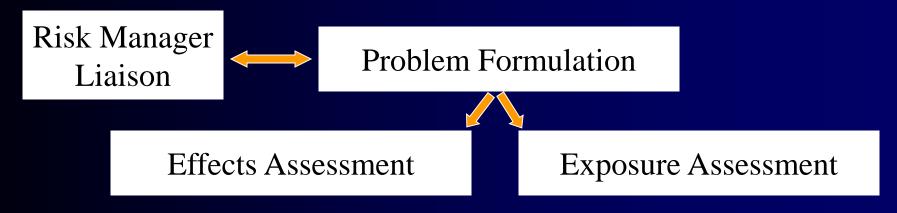
- What are we trying to protect?
- Natural vs. engineered empoundments
- Is water-covered mine waste a habitat?
- Do we care about benthic invertebrates?
- Are we attracting waterfowl to contaminated habitat?


Protection Goals: Details

- Increased enzyme activity
- 20% reduction in fish population
- Accumulation of a contaminant in tissues
- Statistically significant decrease in fecundity
- 50% fish mortality in an acute toxicity test


What is "unacceptable"?

"One does not swat a gnat while being charged by elephants"


- Alvin Winberg (1987)

Conceptual exposure diagram for foreshore sediments

ERA Framework

Simple Scenario

- Need to know (for each receptor/COPC):
 - EEC = expected environmental concentration (exposure)
 - BC = benchmark concentration (effect)
- Information from field, literature or lab
- Typically used at screening stage

Integrated Assessment

CHEMICAL CONTAMINATION

- Effluent
- Water
- Sediment
 - surficial (recent)
 - cores (historic)
- Tissue

- Sediment toxicity
- In situ exposures

- Fish
- Crab
- Bottom-dwelling invertebrates

RESIDENT COMMUNITIES (STRUCTURE, TISSUE BURDENS, HISTOPATHOLOGY, BIOMARKERS)

TOXICITY AND

TESTING

BIOACCUMULATION

Top 3 Effects Assessment Issues for Mines...

- Bioavailability
- Bioavailability
- Bioavailability

Food Chain

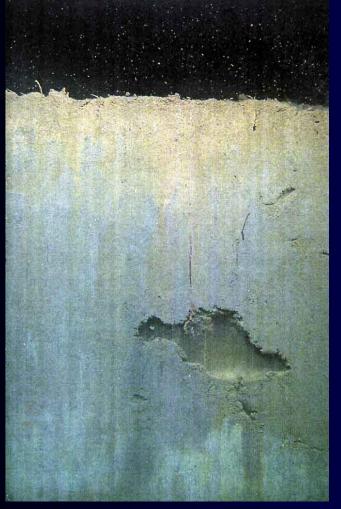
- Sediments
- Water
- Benthos
- Plants
- Fish
- Birds

Aquatic Toxicity Test Organisms

- Algae/aquatic plants
- Invertebrates
- Fish
- Others (amphibians, bacteria, protozoa, etc.)

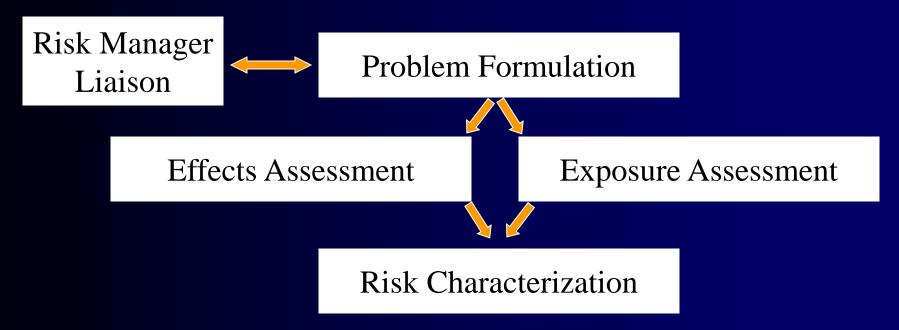
Focus has been on single-species tests, although some microcosm studies have also been conducted

Toxicity Testing - Water



Toxicity Testing - Sediments

Benthic Community in Sediments


Healthy Sediment Community

Impacted Sediment Community

ERA Framework

Simple Scenario

HQ = EEC / BC

HQ = Hazard or Risk Quotient

EEC = expected environmental concentration (exposure)

BC = benchmark concentration (effect)

- HQs may be calculated for whole sites, or may be spatially distinct
- Limited application at most mine sites

Integrative Assessment Response Patterns

Chemical Contamination	Toxicity	Community Alteration
+	+	+
-	-	-
+	-	-
_	+	-
_	-	+
+	+	-
_	+	+
+	-	+

Application of ERA Tools

Bluebell Mine

Mill at Galena Bay

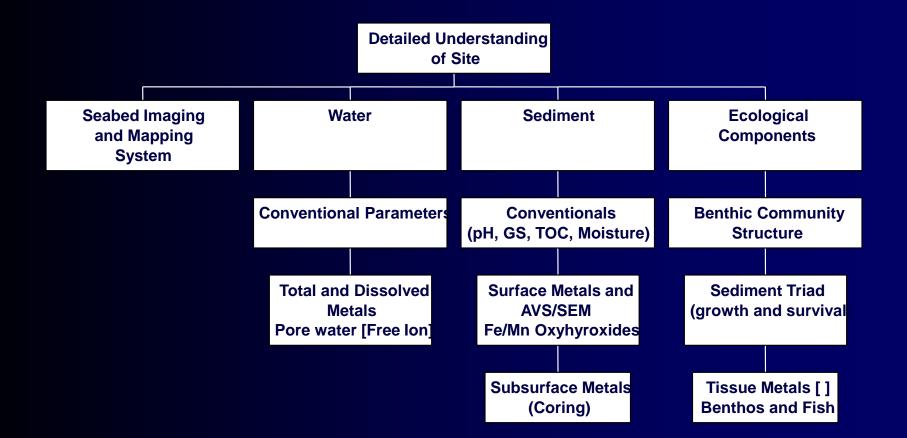
Sediment contamination in north basin Kootenay Lake

	CCME		
Metal (mg/kg dw)	PEL	Range	Mean
Arsenic	17	5 - 2300	314
Cadmium	3.5	0.4 - 14.0	4.4
Chromium	90	14 - 52	25
Copper	197	32 - 142	70
Lead	91.3	16 - 3050	862
Zinc	315	115 - 3440	969
ZINC Source: Macdonal		115 - 3440	909

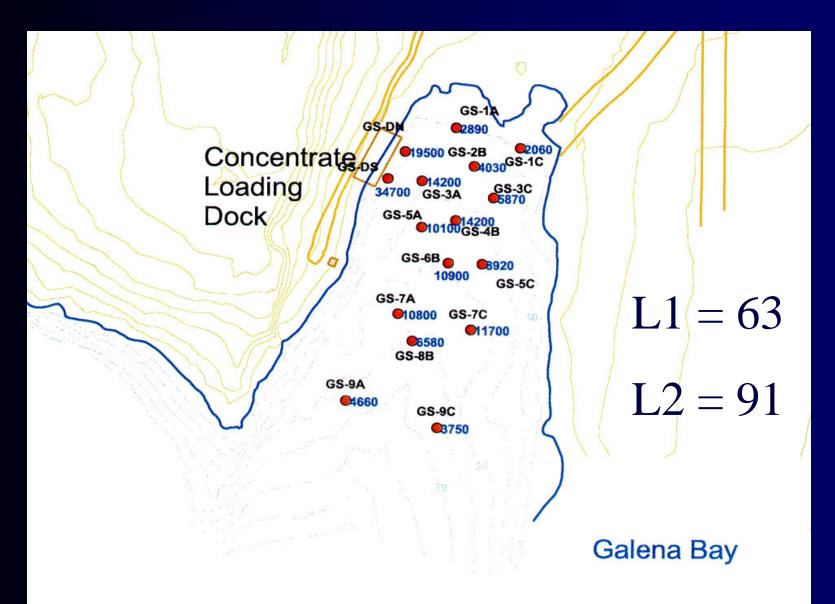
Source: Macdonald et al. 1994

Bluebell Bay

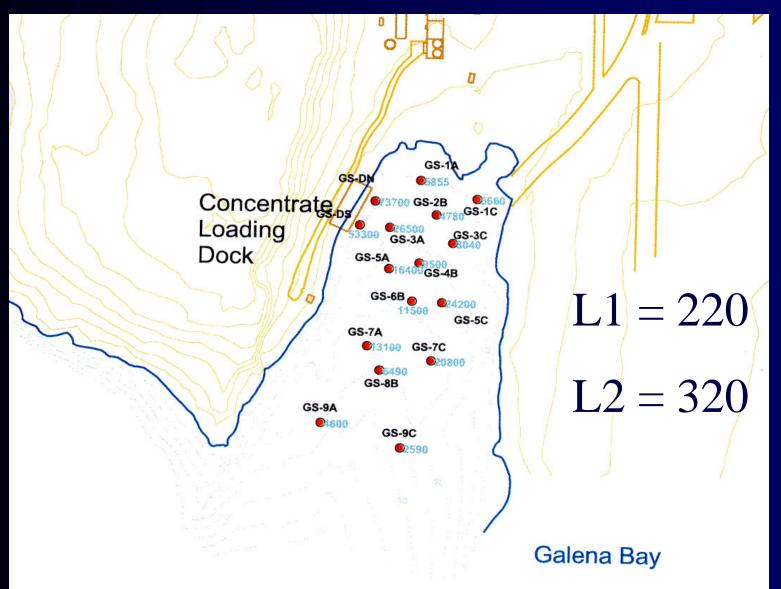
Galena Bay


1 mili

T


Objectives – 2000 Study

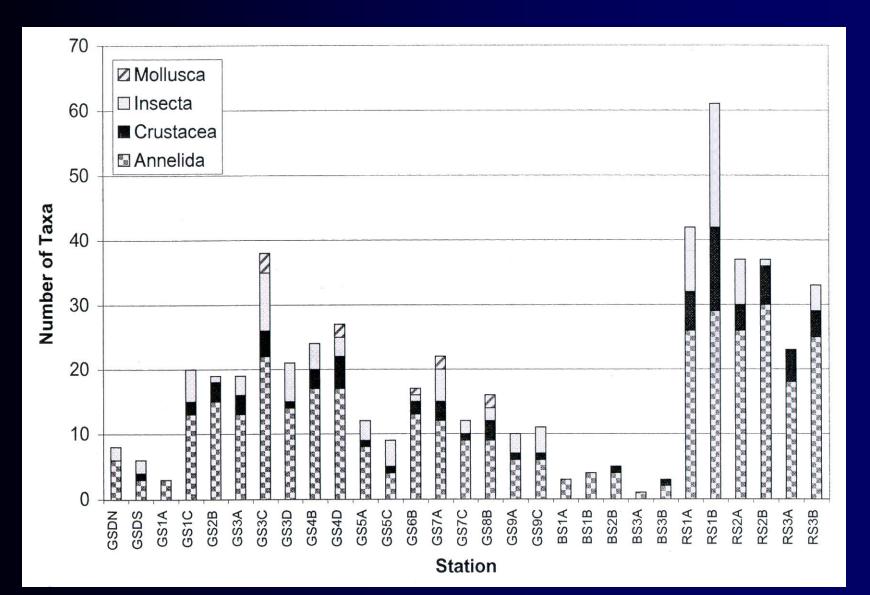
- Acquire an understanding of the physical, chemical and biological conditions at former Bluebell Mine to support site management.
- Determine the spatial extent and magnitude of metals contamination in Kootenay Lake.
- Determine the ecological and toxicological characteristics of surface sediments in Galena, Bluebell & Kootenay (reference) Bay.


Overview of Studies Undertaken

Lead in Surface Sediments

Zinc in Surface Sediments

LOCATION		MEAN <u>+</u> SD	
	SAMPLE ID	SURVIVAL (%)	DRY WEIGHT (MG/INDIV.)
	Negative Control	88.0 <u>+</u> 8.4	0.1 <u>+</u> 0.02
Galena Bay	GSDS	0	-
	GSDN	10.0	0.10
	GS1A	100.0	0.10
	GS1C	100.0	0.28
	GS2B	100.0	0.23
	GS3A	30.0	0.10
	GS3C	100.0	0.20
	GS4B	70.0	0.16
	GS5A	50.0	0.06
	GS5C	70.0	0.09
	GS6B	80.0	0.10
	GS7A	90.0	0.09
	GS7C	100.0	0.07
	GS8B	100.0	0.15
	GS9A	100.0	0.13
	GS9C	10.0	0.10
Bluebell Bay	BS1A	0	-
	BS1B	0	-
	BS2B	0	-
	BS3A	10.0	0.10
	BS3B	0.0	-
Kootenay Bay	RS1A	80.0	0.35
	RS1B	100.0	0.19
	RS2A	100.0	0.22
	RS2B	100.0	0.25
	RS3A	100.0	0.10
	RS3B	100.0	0.15

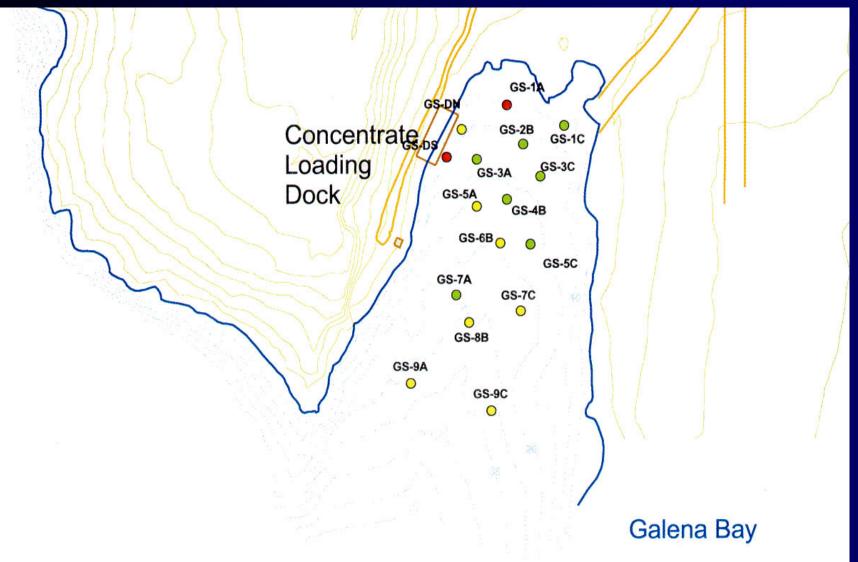

EC20 values: survival = 70.4% and dry weight criteria = 0.08 mg/individual

Exceeds either EC20 or criterion for effects (20% of control) n=1 per field replicate; n=5 for control

Amphipod

Results

Benthos: Major Taxa Richness



Aquatic Effects Assessment

 Toxicity and benthic community structure data from Galena Bay and control stations were used to group stations according to:

> No/Low Impact Moderate Impact High Impact

Results of Integrated Assessment of Sediment Quality

Take Home Messages

- Despite high bulk sediment chemistry, overlying water quality is good.
- Toxicity to chironomids and *Hyalella* is limited to area around concentrate loading dock.
- Benthic community structure shows low to moderate adverse effects at most stations.
- Overall, adverse effects are far less than expected given bulk sediment chemistry.

Follow-up Studies

Refining Linkages Among Triad Components

2001 Studies

- Detailed assessment of nearshore area (sediment metals, AVS/SEM, Fe/Mn oxyhydroxides, pore water metals).
- Toxicity testing (14-day and 28-day Hyalella).
- Sampling of profundal areas offshore of Galena Bay and linkage to Kootenay Lake.
- Repeat DFO 1978 sediment coring study to determine deposition history of lake.

2001 Studies (con't)

- Free metal ion []'s in pore water will be modeled and used to link/predict effects (toxicity, benthic community structure).
- Combined with 2000 study results, decisions will be made regarding extent and form of management required.

Conclusions

- Traditional criteria-based approaches have limited usefulness at mines
- ERA is a flexible approach that can be tailored to specific situations
- ERA is a <u>process</u> that can incorporate the best tools available
- ERA success is dependent on the establishment of clear protection goals