

Sulphate Mineral Speciation by Sequential Extraction for the proposed Veladero Mine, Argentina

Rikkert J. Vos and Tim A. O'Hearn, P.Eng. BC Research Inc., Vancouver, Canada. Veladero gold/silver project in Argentina with predominant mineralogy of waste rock:

- alunite $(KAl_3(SO_4)_2(OH)_6)$
- jarosite $(KFe_3(SO_4)_2(OH)_6)$ and
- quartz
- only small quantities of pyrite.

Equations for jarosite & alunite acidity release are (D.Langmuir, 1995):

 $KFe_{3}(SO_{4})_{2}(OH)_{6} + 3H_{2}O = K + 3Fe(OH)_{3} (ppt) + 2SO_{4}^{2-} + 3H^{+}$ equilibrium pH = 3.8 $KAl_{3}(SO_{4})_{2}(OH)_{6} = 3H_{2}O = K + 3Al(OH)_{3}(ppt) + 2SO_{4}^{2-} + 3H^{+}$ equilibrium pH = 6.8

The objective of the study was to determine whether it would be possible to:

- ↗ Distinguish between alunite, jarosite and pyrite.
- Account for most of the total sulphate as to minimise sulphur reporting as insoluble sulphate.

There are two basic methods for determining sulphate-sulphur in waste rock material:

- Alkaline leaching consisting of either sodium carbonate or sodium hydroxide.
- ↗ Acid leaching using hydrochloric acid.

Sequential Extractions Investigated

Extraction 1:

- 20 mL of HCl
- boil

Extraction 2:

- sodium carbonate
- boil or prolonged heating

Extraction 3:

- 1:7 HNO₃
- room temperature overnight

Three variables were investigated to improve the recovery of sulphate by:

- Increasing the concentration of HCl from 25% to concentrated,
- Increasing the concentration of sodium carbonate from 2 g/L to 5 g/L, and
- ↗ Increasing the reaction time of the sodium carbonate from a 1 h boil to 16 h @ 70°C.

Test Samples

- Two wasterock samples, 1701 and 1705, tested in duplicate.
- The extracts from each of the sequential extractions for metals by ICP-OES.
- Sample 1701 mineralogy by the Rietveld XRD method at UBC.
- Three relatively pure specimens grade mineralogical samples of alunite, jarosite and pyrite.
- The alunite and jarosite specimen were subjected to the sequential leach testing.
- The pyrite sample was leached sequentially with 25% HCl followed by 1:7 HNO_3 at room temperature.

	Sample 1701								
	А	В	С	D	E	F	G	Н	
	25% HCI		Conc. HCI		Conc	. HCI	Conc. HCI		
Sulphate-S (%)	0.30	0.27	0.65	0.73	0.82	0.79	0.83	0.75	
	2 g/L, Na ₂ 0	CO₃ 1 h boil	5 g/L, Na ₂ 0	CO ₃ 1 h boil	2 g/L Na ₂ CO ₃	₃ 16 h @ 70C	5 g/L Na ₂ CO	₃ 16 h @ 70C	
Sulphate-S (%)	0.83	0.83	0.59	0.51	0.54	0.63	#N/A	0.75	
	1:7 HNO ₃ for 16 h @ RT		1:7 HNO ₃ fo	r 16 h @ RT	1:7 HNO ₃ fo	r 16 h @ RT	1:7 HNO3 for 16 h @ RT		
Sulphide-S (%)	0.02	0.01	-0.01	0.01	-0.01	-0.01	0.01	0.01	
Total S in Extracts	1.15	1.11	1.23	1.26	1.35	1.42	#N/A	1.52	
Total S by Leco	2.20	2.20	2.20	2.20	2.20	2.20	2.20	2.20	
Insoluble S (%)	1.05	1.09	0.97	0.94	0.85	0.78		0.68	
% S accounted for	52%	51%	56%	57%	61%	64%	#N/A	69%	
in extracts									
				Sam	ole 1705				
	25% HCl Conc. HCl				Conc	. HCI	Conc. HCl		
Sulphate-S (%)	0.25	0.22	0.53	0.84	0.53	0.68	0.77	0.83	
	2 g/L, Na ₂ 0	CO ₃ 1 h boil	5 g/L, Na ₂ 0	CO ₃ 1 h boil	2 g/L Na ₂ CO ₃	₃ 16 h @ 70C	5 g/L Na ₂ CO	3 16 h @ 70C	
Sulphate-S (%)	0.91	1.20	1.09	1.11	1.11	1.19	1.55	1.43	
	1:7 HNO ₃ for 16 h @ RT		1:7 HNO ₃ fo	r 16 h @ RT	1:7 HNO ₃ fo	r 16 h @ RT	1:7 HNO3 for 16 h @ RT		
Sulphide-S (%)	0.01	0.02	0.02	0.03	0.01	0.01	0.01	0.01	
Total S in Extracts	1.17	1.44	1.64	1.98	1.65	1.88	2.32	2.27	
Total S by Leco	4.52	4.52	4.52	4.52	4.52	4.52	4.52	4.52	
Insoluble S	3.35	3.08	2.88	2.54	2.87	2.64	2.20	2.25	
%S accounted for	26%	32%	36%	44%	37%	41%	51%	50%	
in extracts									

Table 1a: Sulphur Recoveries by Sequential Extraction

Table 3: Sulphur Speciation by Sequential Leaching ofSpecimen Grade Samples

Sample	Total S	Sequential	Extracted S	Recovery	
	Leco (%)	Leach	(%)	(%)	
Pyrite	51.84	25% HCI	0.02	0%	
		1:7 HNO3 @ RT	35.67	69%	
				Total = 69%	
Alunite	14.5	Conc. HCl	0.01	0%	
		5 g Na2CO3 16h	0.57	4%	
				Total = 4%	
Jarosite	11.23	Conc. HCl	10.63	95%	
		5 g Na2CO3 16h	2.56	23%	

Mass Balance Calculations

- very little barite, pyrite or feldspar type minerals.
- jarosite and alunite minerals were known to be mainly potassium based.
- from metal and sulphate analysis it should be possible to calculate the jarosite and alunite concentrations assuming that all of these minerals could be dissolved.
- should be a good correlation between the moles of dissolved potassium and moles of iron and aluminum.

Conditions	Extract	AI	Fe	к	SO ₄ -S	Kassoc.	K accounted	SO ₄ -S	Jarosite	SO₄-S remaining	SO ₄ -S	Alunite	SO ₄ -S remain	ing after
						with	for in Jarosite	assoc.	based	remaining after	assoc.	based	after accoun	ting for
						SO ₄ -S	+ Alunite	with Fe	on Fe	accounting for	with Al	AI	alunite & ja	rosite
		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(%)	jarosite (ppm)	(ppm)	(%)	(ppm)	(%)
Sample 1701														
25% HCI	B HCL	690	7095	1660	2666	1629	98%	2,710	2.12	(44)	545	0.28	-589	
2g/100 mL 1h boil	B Na ₂ CO ₃	7200	32	5860	8325	5086	87%	12	0.01	8,313	5,689	2.91	2624	
1:7 HNO3	B HNO3	680	4732	340	133	81	24%	1,808	1.41	(1,674)	537	0.27	-2212	
Totals		8570	11859	7860	11125				3.54			3.46	-177	-2%
Conc. HCI	D HCL	3870	11171	3670	7299	4459	122%	4,267	3.34	3,032	3,058	1.56	-26	
2g/100 mL1h boil	D Na ₂ CO ₃	5840	10	4000	5128	3133	78%	4	0.00	5,124	4,614	2.36	510	
1:7 HNO3	D HNO3	460	48	280	133	81	29%	18	0.01	115	363	0.19	-249	
Totals		10170	11229	7950	12561				3.36			4.11	236	2%
Conc. HCI	FHCL	3840	12022	3800	7899	4826	127%	4,592	3.59	3,307	3,034	1.55	273	
2g/100 mL 16h @ 700	FNa ₂ CO ₃	6540	32	4520	6327	3865	86%	12	0.01	6,315	5,167	2.64	1147	
1:7 HNO3	F HNO3	420	70	140	-67	-41	-29%	27	0.02	(93)	332	0.17	-425	
Totals		10800	12124	8460	14160			******	3.62	***************************************	*****	4.36	995	7%
Conc. HCI	H HCL	3480	12154	3780	7533	4602	122%	4,643	3.63	2,890	2,750	1.41	140	
5g/100 mL 16h @ 700	H Na ₂ CO ₃	8100	22	7540	7526	4598	61%	8	0.01	7,517	6,400	3.27	1117	
1:7 HNO3	H HNO3	340	80	120	133	81	68%	31	0.02	103	269	0.14	-166	
Totals		11920	12256	11440	15192	******			3.66		******	4.81	1092	7%
Sample 1705					0									
25% HCI	B HCL	2750	1448	1220	2200	1344	110%	553	0.43	1,647	2,173	1.11	-526	
2g/100 mL 1h boil	B Na2CO3	11700	12	7200	11988	7324	102%	5	0.00	11,983	9,244	4.73	2739	
1:7 HNO3	B HNO3	580	72	220	200	122	55%	28	0.02	172	458	0.23	-286	
Totals		15030	1532	8640	14388				0.46			6.07	1927	13%
Conc. HCI	D HCL	9660	1601	3950	8432	5152	130%	612	0.48	7,821	7,633	3.90	188	
2g/100 mL 1h boil	D Na2CO3	12520	6	7580	11056	6754	89%	2	0.00	11,053	9,892	5.06	1161	
1:7 HNO3	D HNO3	900	20	360	333	203	57%	8	0.01	325	711	0.36	-386	
Totals		23080	1627	11890	19821				0.49			9.32	964	5%
Conc. HCI	F HCL	9700	1613	3870	6766	4134	107%	616	0.48	6,150	7,664	3.92	-1514	
2g/100 mL 16h @ 750	F Na2CO3	13160	20	8500	11855	7243	85%	8	0.01	11,847	10,398	5.32	1449	
1:7 HNO3	F HNO3	320	30	100	133	81	81%	11	0.01	122	253	0.13	-131	
Totals		23180	1663	12470	18754				0.50			9.36	-196	-1%
Conc. HCI	H HCL	10000	1640	4140	8266	5050	12 <mark>2%</mark>	626	0.49	7,639	7,901	4.04	-262	
5g/100 mL 16h @ 750	H Na2CO3	17900	20	13940	14319	8748	63%	8	0.01	14,311	14,143	7.23	168	
1:7 HNO3	H HNO3	500	26	80	133	81	102%	10	0.01	123	395	0.20	-272	
Totals		28400	1686	18160	22718			0.50	0.50			11.47	-365	-2%

Table 1b: Calculations to Determine Alunite and Jarosite Content

The results of Rietveld XRD analysis of 1701:

- 86% quartz
- 3% jarosite
- 11% alunite
- Trace pyrite and trace rutile

Comparison with sequential leach:

- jarosite 3% vs. 3.66%
- alunite 11% vs. 4.81%
- suggests difference, 6.2% alunite (11% 4.8), was insoluble and accounts for 0.96% insoluble sulphate (64/414.1 X 6.2%).
- Wet chemistry data showed 0.68% insoluble sulphur equivalent to (0.68% X 414.1/64 = 4.4% alunite)
- Adding this quantity to the amount found by sequential extraction (4.8 + 4.4 = 9.2%) the comparison is 11% vs.
 9.2% by sequential extraction.

Method for calculating jarosite and alunite:

- 1. Calculating the quantity of alunite, dissolved in the HCl extract, from the concentration of aluminum.
- 2. The equivalent sulphate associated with the HCl dissolved alunite was then calculated and subtracted from the total HCl sulphate-sulphur. The remaining sulphate was then assumed to be associated with jarosite only and calculated accordingly.
- 3. The insoluble sulphate was assumed to be associated with alunite only and was added to the aluminum based alunite calculated in Step 1 above.

Table 4: Comparison of Mineral Analysis by Reitveld XRD and Sequential Extraction

Mineral	Sample 7407	Sample 7829	Sample 7384	Sample 7999	Sample 1701
Quartz (%)	71.4	97.9	83.3	99.7	86
Alunite					
Reitveld (%)	27.1	1.4	ND	ND	11
Seq. Leach (%)	28.17	2.51	0.27	0.51	9.2
% Deviation	-3.8%	-83.5%	NA	NA	16.4%
Jarosite					
Reitveld (%)	0.8	0.1	16.1	ND	3
Seq. Leach (%)	0.23	<0.08	17.15	<0.08	3.5
% Deviation	71.0%	NA	-6.3%	NA	-16.7%
Pyrite					
Reitveld (%)	0.1	0.2	0.2	0.3	NA
Seq. Leach (%)	0.04*	0.02*	0.09*	0.19*	NA

CONCLUSIONS

- Concentrated HCl dissolved all of the jarosite and a portion of the alunite.
- Sodium carbonate at 5 g/100 ml over an extended reaction time of 16 h at ~70°C dissolved only a portion of the alunite.
- The sum of the aluminum in the HCl extract and acid insoluble sulphur, upon conversion to equivalent alunite, showed good correlation with alunite measured by the Rietveld Method.
- When samples contained <0.15% sulphate-sulphur, equivalent to 1 and 1.2% alunite and jarosite, respectively, poor correlation between the potassium and sulphate was observed. These values probably represent limits of detection for these two minerals by this sequential extraction procedure.
- The procedure developed provided a cost effective method for speciating both alunite and jarosite for this project.