

Biological Treatment of Acid Wastewater for Selective Metal Recovery and Site Remediation

Commercial Case Studies

David Kratochvil, Michael Bratty

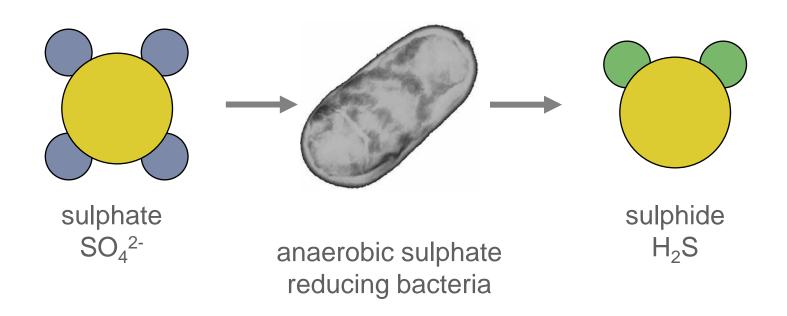
BioteQ Environmental Technologies Inc, Canada

Johannes Boonstra

Paques BV, The Netherlands

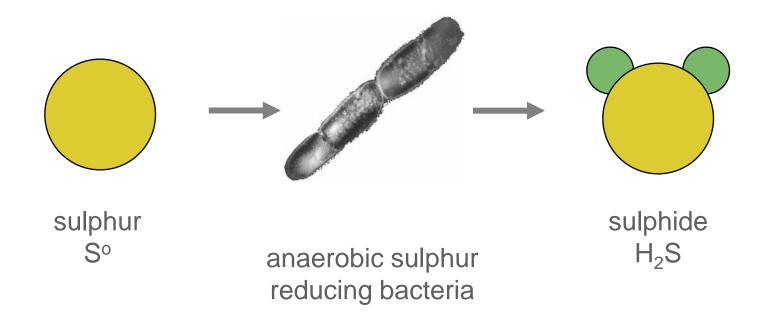
Introduction

- n BioteQ and Paques have commercialized a high-rate H₂S generation biotechnology using sulphate and elemental sulphur
 - treatment of acid drainage
 - treatment of smelter and metal industry effluents
 - recovery of metals as saleable concentrates
- n 4 Case studies:
 - So reduction upstream of an existing lime plant
 - So reduction to replace an existing lime plant
 - So reduction for metal recovery at a dump leach operation
 - SO₄ reduction for groundwater remediation


Metal Sulphide Precipitation

Metal-contaminated effluent + H₂S → Metal Sulphide

- n Metals can be removed selectively
- n High grade, saleable products


Biological Sulphate Reduction

$$3SO_4^{2-} + 2C_2H_5OH \longrightarrow 3HS^- + CO_2 + 3H_2O + 3HCO_3^-$$

 $SO_4^{2-} + 4H_2 + H^+ \longrightarrow HS^- + 4H_2O$

Biological Sulphur Reduction

$$6S^{\circ} + C_2H_5OH + 3H_2O \longrightarrow 6H_2S + 2CO_2$$

BioteQ and Paques

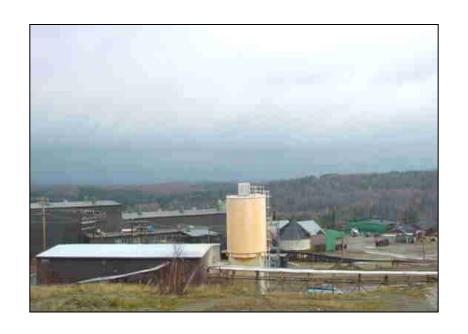
- n BioteQ and Paques have a Technology Cooperation Agreement and market the **BioSulphide - Thiopaq** technology for a number of industrial applications
- n 14 industrial plants for reduction of sulphur compounds marketed under trademark **Thiopaq**®
- n BioteQ owns the patented **BioSulphide Process™** concerned with the reduction of sulphur compounds and concurrent selective recovery of metals
- n First industrial BioSulphide-Thiopaq plant built in Canada

Why Sulphide for Water Treatment

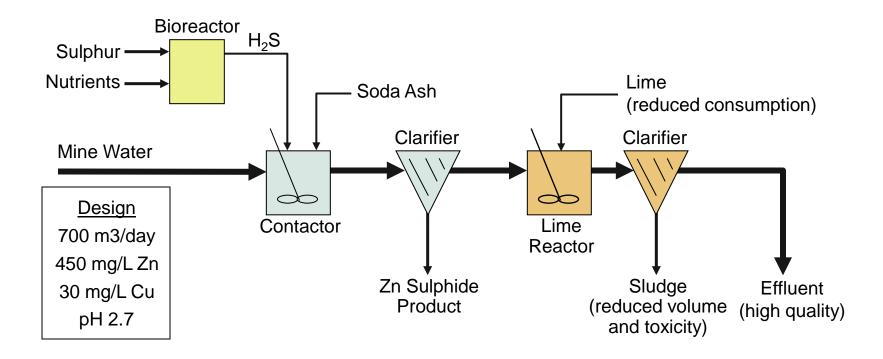
- n <u>Better effluent water quality</u> metal sulphides have lower solubility than hydroxides lower overall TDS
- n <u>Easier and less expensive solid-liquid separation</u> sulphide precipitates are crystalline and have higher density
- n Metals not stored on site as hydroxide sludge
- n Opportunities for revenue from recovered metals
- n <u>Stand-alone</u> application or <u>integrated</u> with lime plant
- n When integrated with lime plant:
 - Reduced chemical consumption
 - Reduced volumes and toxicity of sludge
 - Environmentally better solution better quality water, metals recycled and sludge is more stable

Biogenic Sulphide Generation

- n Sulphur reduction produces lowest cost sulphide
- Sulphide is produced on demand more efficient dosing of reagent
- n <u>Increased safety</u> low inventory of sulphide



Case Study 1


S° Reduction Upstream of Lime Plant Caribou Mine, New Brunswick

Caribou Flowsheet

Benefits of BioteQ Plant at Caribou

Incorporating high-rate biotechnology at Caribou has resulted in the following benefits (Stage 1):

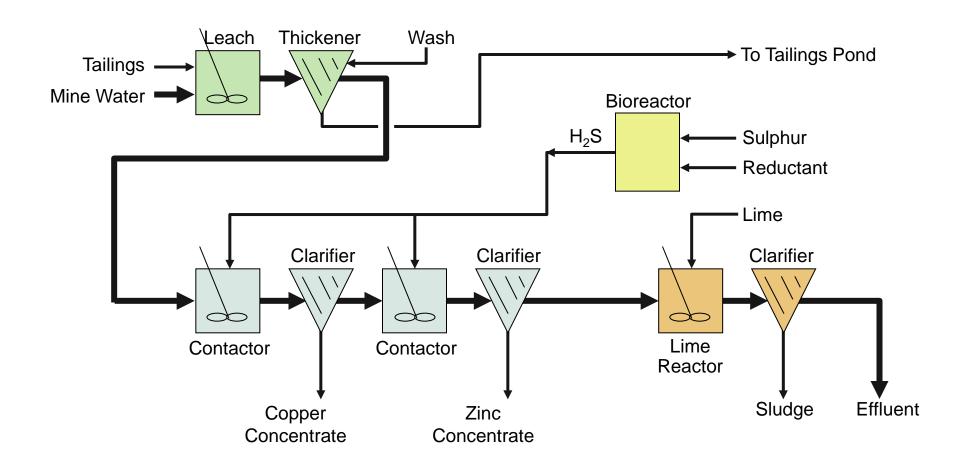
- n ~100% removal of zinc, copper, cadmium and lead from the mine water
- n Zinc product recovered for sale (est. 215 tonnes per year)
- n Projected lime savings of 24%
- n Volume of lime sludge production reduced by estimated 35%
- n Estimated reduction of heavy metal content of sludge from 125 tonnes/year to less than 0.1 tonnes/year

Caribou Project Facts

n Started Engineering June 1, 2001

n Start up / inoculation November 23, 2001

n Commissioning complete February 2002

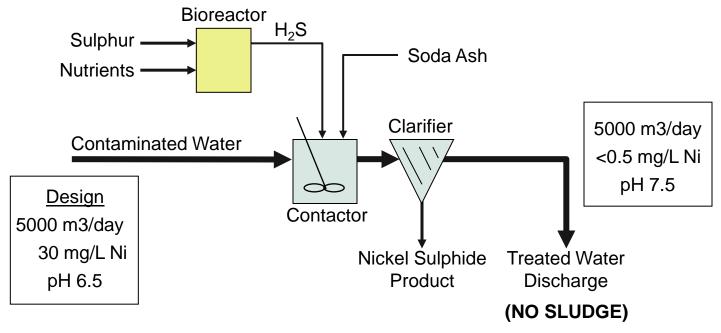

n Budget CAPEX \$550,000

n Actual CAPEX \$523,000

- Metal concentrations in feed water exceeded designby 1.5 to 2 times
- Sulphide generation rate 0.26 to 0.43 kg/m³ mine water
 exceeded design expectations
- n Plant availability 98%
- n Zn concentrate (+ Cd, Cu, Pb) sold to Noranda Brunswick

Caribou Expansion Under Review

Case Study 2


S° Reduction to Replace Lime Plant Raglan Mine, Quebec

Raglan Flowsheet

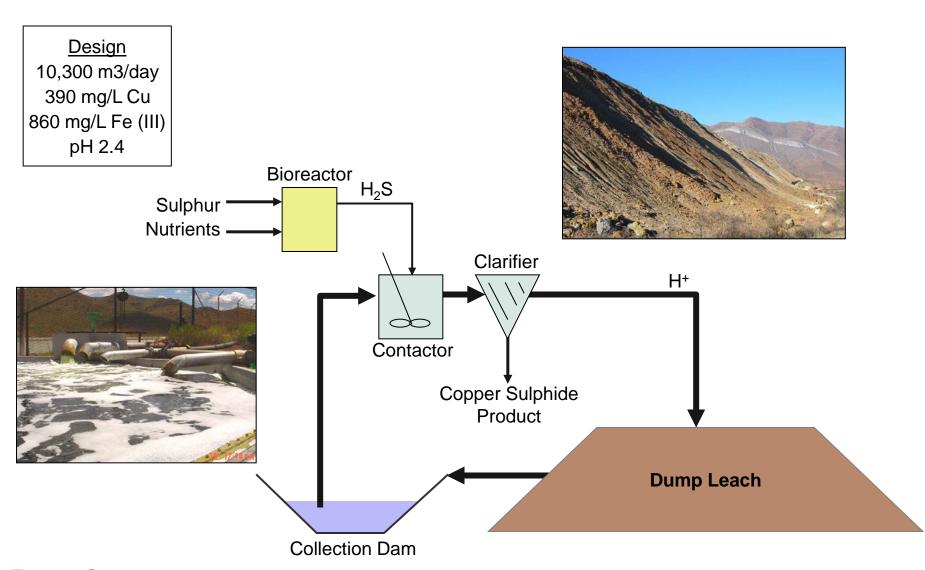
Advantage to SMRQ-Falconbridge

- n No sludge disposal and storage
- n Better quality treated water (TDS)
- n Nickel recovery from wastewater
- n More reliable treatment process for cold weather operation
- n Reduced water treatment costs

Raglan Facts

- n Piloting on site complete
- n Engineering in progress
- n Mine life +30 years

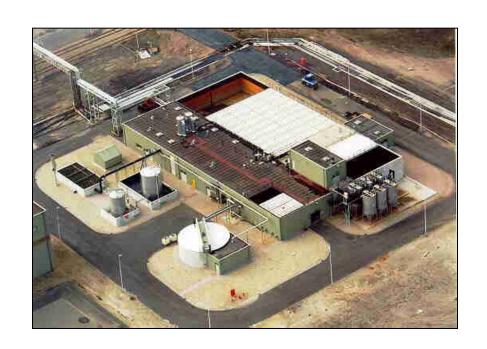
n	Projected capital cost	CDN \$1.1 million
		Θ = 1 · ψ · 1 · · · · · · · · · · · · · · · · ·


- n Net operating cost \$0.05 per m³ (after nickel revenue)
- n Current operating cost \$0.45 per m3

Case Study 3

S° reduction for Metal Recovery in Dump Leach Operation Bisbee, Arizona

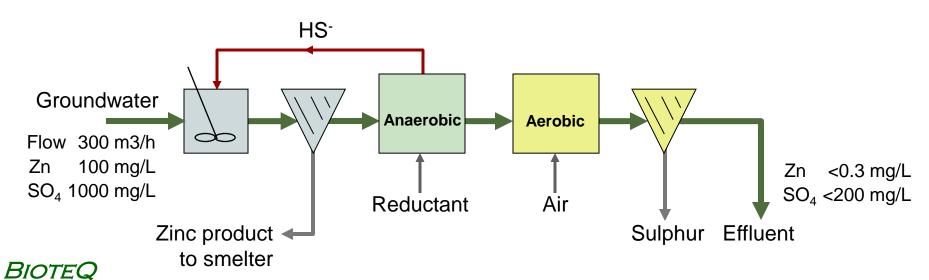
Bisbee Flowsheet


BIOTEQ

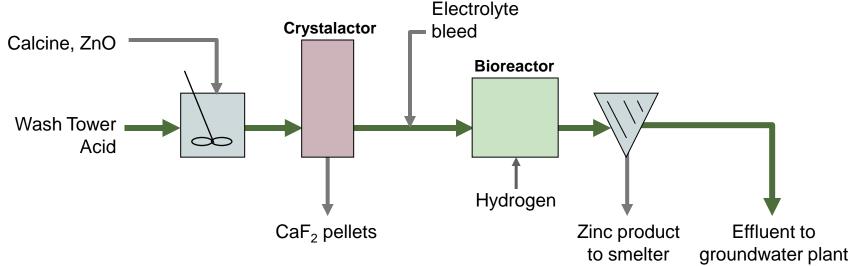
Bisbee Facts

- n Detailed engineering in progress
- n Planned startup 3Q 2003
- n 3.2 million lb Cu /year
- n 3,500 tonnes Cu concentrate/year @>45% Cu
- n Reduced environmental liability
- n Projected capital cost CDN \$2.56 million
- n Operating cost \$0.20 per lb Cu
- n Capital payback < 2 years

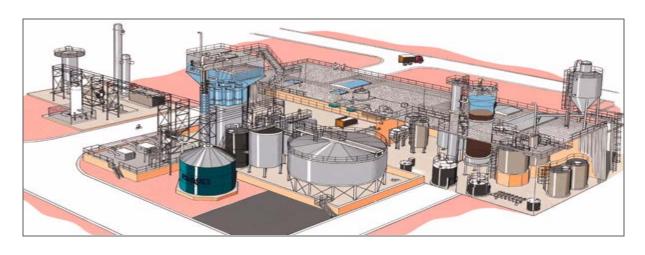
Case Study 4


SO₄ Reduction for Groundwater Remediation Budel Zink, Netherlands

Sulphate Reduction at Budelco



- n 200,000 tonnes/y zinc refinery
- n Original plant commissioned in 1992
- n UASB bioreactor
- n Metal sulphide and sulphur returned to smelter


Thiopaq® Bioreactor at Budelco

- n Hydrogen-fed Thiopaq® bioreactor commissioned in 1999
- n 2 streams are treated...
 - Wash tower acid (0.5 g/L Zn, 10 g/L H_2SO_4 , 1 g/L HCI, 0.5 g/L HF)
 - Electrolyte bleed (15 g/L Mg, 300 g/L SO₄)
- n Streams previously treated with lime

Budel Plant Data

Design Capacity	H ₂ S Influent	3,200 kg/day 40 m3/h		
Production	ZnS CaF ₂	10 t/day 0 - 0.9 t/day		
Water Quality		In	Out	
	SO ₄	15,000	< 300	
	SO ₄ Zn	15,000 10,000	< 300 < 0.2	

Conclusions

- n High-rate, engineered bioreactor systems offer many possibilities for application in mining and related industries
- n Commercially proven, safe and robust biological processes remove sulphur compounds and recover metals for sale
- n Current and potential applications include...
 - treatment of ARD
 - I low cost H₂S production
 - selective metal removal from metallurgical and waste streams
 - sulphate reduction for environmental compliance
 - sulphate reduction for industrial water control
 - SO₂ removal