Alcohol Enhanced Sulfate-Reducing Bioreactors- Better Control of Microbial Activity and Sludge Management

> Timothy K. Tsukamoto, Ph.D. Glenn C. Miller, Ph.D. Ms 199 University of Nevada, Reno, NV 89557-0013 USA



### Comparison of the Leviathan Mine Aspen Seep with Water Quality Standards.

MCL = primary maximum contaminant level SMCL = secondary maximum contaminant level

| constituent | Aspen Seep | Water Quality Standards |
|-------------|------------|-------------------------|
| pН          | 3.2        | 6.5-8.5                 |
| sulfate     | 1780       | 400/500 MCL 250 SMCL    |
| Al          | 41         | 0.05-0.2 SMCL           |
| Fe          | 126        | 0.3 SMCL                |
| Ni          | 0.567      | 0.1 MCL                 |
| Mn          | 21         | 0.05 SMCL               |
| Cu          | 1.03       | 1.3 MCL 1.0 SMCL        |
| Zn          | 0.786      | 5.0 SMCL                |
| Со          | 0.37       |                         |



#### **Considerations for Bioreactor Use**

• Treatment

-reliability - Is the system robust?

- -water quality
- Sludge management
  - -quantity
  - -quality
- Sustainability
- Space availability
- Cost

#### **Treatment Process**

(general equations)

Sulfate-reduction and subsequent removal of metals by sulfide precipitation.

## $4 \operatorname{AH}_{2} + \operatorname{SO_{4}}^{2} + 2 \operatorname{H}^{+} \longrightarrow 4 \operatorname{A}^{2} + \operatorname{H_{2}S} + 4 \operatorname{H_{2}O}$ (e.g. 2 CH<sub>2</sub>O + SO<sub>4</sub><sup>2</sup> + 2 H<sup>+</sup> $\longrightarrow 2 \operatorname{CO_{2}} + \operatorname{H_{2}S} + 2 \operatorname{H_{2}O}$ ) pH < 7 and H<sub>2</sub>S + M<sup>2+</sup> $\longrightarrow MS + 2 \operatorname{H}^{+}$

#### Solubility Products for Metal Complexes

| Substance           | <u>K</u> <sub>sp</sub>   | <u>Su</u> | <u>bstance</u>    | <u>K</u> <sub>sp</sub>   |
|---------------------|--------------------------|-----------|-------------------|--------------------------|
| HgS                 | 6.38 x 10 <sup>-53</sup> | Zn(       | (OH) <sub>2</sub> | 7.68 x 10 <sup>-17</sup> |
| Fe(OH) <sub>3</sub> | 2.67 x 10 <sup>-39</sup> | Ni(       | OH) <sub>2</sub>  | 5.54 x 10 <sup>-16</sup> |
| CuS                 | 1.28 x 10 <sup>-36</sup> | Cd        | (OH) <sub>2</sub> | 5.33 x 10 <sup>-15</sup> |
| CdS                 | 1.4 x 10 <sup>-29</sup>  | Mn        | S                 | 4.55 x 10 <sup>-14</sup> |
| PbS                 | 8.81 x 10 <sup>-29</sup> | Mn        | (OH) <sub>2</sub> | 2.04 x 10 <sup>-13</sup> |
| ZnS                 | 2.91 x 10 <sup>-25</sup> | Pb(       | CO <sub>3</sub>   | 1.48 x 10 <sup>-13</sup> |
| NiS                 | 1.08 x 10 <sup>-21</sup> | Cd        | CO <sub>3</sub>   | 6.20 x 10 <sup>-12</sup> |
| Pb(OH) <sub>2</sub> | 1.4 x 10 <sup>-20</sup>  | FeC       | CO <sub>3</sub>   | 3.13 x 10 <sup>-11</sup> |
| FeS                 | 1.57 x 10 <sup>-19</sup> | Mn        | CO <sub>3</sub>   | 2.23 x 10 <sup>-11</sup> |
| Fe(OH) <sub>2</sub> | 4.79 x 10 <sup>-17</sup> | NiC       | CO <sub>3</sub>   | 1.45 x 10 <sup>-7</sup>  |

## Critical pH

- The critical pH is the threshold of precipitation. Precipitation of metal sulfides only occurs above the critical pH at specified metal and total sulfide concentration.
- The critical pH goes down when the total sulfide concentration increases at a fixed total Fe concentration.
- As pH increases with a fixed total sulfide concentration more Fe precipitates.

#### Solubility of Fe<sup>+2</sup> in the presence of sulfide

 $FeS(s) = Fe^{2+} + S^{2-}$  $K_{s1} = 18.1$  $HS^{-} = S^{2-} + H^{+}$ p*K* = 13.9  $H_2S = HS^- + H^+$ pK = 7.0 $[Fe^{+2}] = \frac{K_{s1}}{[S^{2-}]} = \frac{10^{-18.1}}{[s^{2-1}]}$  $[S^{2-}]$  $[Fe^{+2}] = \frac{10^{-18.1} (10^{13.9} [H^+] + 10^{20.9} [H^+]^2)}{-10^{-18.1} (10^{13.9} [H^+] + 10^{20.9} [H^+]^2)}$  $[S - II]_{tot}$  $[S - II]_{tot} = total sulfide$ 

#### Substrates

• Typically utilize a substrate that contains the carbon source to generate anaerobic conditions and reduce sulfate.

(e.g. sawdust, manure, mushroom compost)

• As the readily available carbon sources are depleted, treatment decreases.

### Organic Substrates for Dissimilatory Sulfate Reducing Bacteria

- Formate
- Acetate
- Lactate
- Pyruvate
- Malate
- Fumarate
- Succinate
- Alkanes
- Various sugars

- Methanol
- Ethanol
- Propanol
- Butanol
- Ethylene glycol
- Propane diol
- Benzoate
- Phenols (many types

#### Why an alcohol enhanced bioreactor?

- Better flow control
- Better management of reducing equivalents
- Easier ability to manage sludge
- Plugging easier to manage
- Smaller size required
- Requires delivery of alcohol

#### Sizing Bioreactors Based on Rate of Sulfate-Reduction

- Manure/wood/limestone: 0.3 moles of sulfate/m³/day (Gusek, 2002)
- Alcohol enhanced: 1.5 moles of sulfate/m<sup>3</sup>/day

**Highly dependent on a variety of factors!** 

Electron Accounting and Reducing Equivalents 1. The reduction of sulfuric acid to sulfate requires 8 electrons.  $H_2SO_4 \xrightarrow{2H} H_2SO_3^+ H_2O \longrightarrow SO_2 \xrightarrow{2H} SO_4 \xrightarrow{2H} S^+ H_2O \xrightarrow{2H} H_2S$ 

2. The oxidation of ethanol to carbon dioxide involves 12 electrons.

$$CH_{3}CH_{2}OH \xrightarrow{2H} CH_{3}CH \xrightarrow{2H} CH_{3}COH \xrightarrow{2H} CH_{3}OH CO_{2}^{+} H_{2}O \xrightarrow{2H} CH_{2}OH \xrightarrow{2H} CH_{2}OH \xrightarrow{2H} CO_{2}^{+} H_{2}O \xrightarrow{2H} CHOH \xrightarrow{2H} CO_{2}^{+} CO_{2}^{+} H_{2}O \xrightarrow{2H} CO_{2}^{+} H_{2}O \xrightarrow{2H} CO_{2}^{+} H_{2}O \xrightarrow{2H} CHOH \xrightarrow{2H} CO_{2}^{+} CO_{2}^{$$

3. The oxidation of methanol to carbon dioxide involved 6 electrons.

$$CH_{3}OH \xrightarrow{2H} CH_{2} \xrightarrow{2H} CHOH \xrightarrow{2H} CO_{2}$$

#### Amount of alcohol needed to remove 500 mg/L of sulfate

| Alcohol            | Electrons | gm/L AMD  | mL/L AMD  |
|--------------------|-----------|-----------|-----------|
| Ethanol            | 12        | 0.16 gm/L | 0.20 mL/L |
| Methanol           | 6         | 0.22 gm/L | 0.28 mL/L |
| Ethylene<br>Glycol | 10        | 0.26 gm/L | 0.23 mL/L |

So to treat 32 L/min or 4.44 million gallons/year you need ~ 890 gallons ethanol assuming 100% efficiency

# In 1998 a Full Scale Bioreactor was Constructed at the Leviathan Mine

- Two Cell bioreactor
- Matrix consisted of wood chips in one cell and inert rock in the other
- Utilized a mixture of alcohols as the carbon source (gravity fed)
- Designed to allow precipitates to be flushed from the cells
- Utilized sequential reactors
- Some base needs to be added due to the low pH of Aspen Seep (pH 3.2)













#### Aspen Creek Bioreactor

|                       | Nickel | Copper | Zinc   | Iron   |
|-----------------------|--------|--------|--------|--------|
|                       | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
| Influent              | 0.14   | 0.28   | 1.75   | 83     |
| Effluent              | 0.02   | n.d.   | n.d.   | 34     |
| Effluent<br>(settled) | 0.02   | n.d.   | n.d.   | 0.7    |

#### Aspen Seep Bioreactor Iron Influent and Effluent Concentrations & Flow.



Aspen Seep Bioreactor Iron Influent and Effluent Concentrations When pH > 6.5 in Effluent & Flow.





Aspen Seep Bioreactor Influent and Effluent Copper Concentrations & Flow



#### Aspen Seep Bioreactor Influent and Effluent Nickel concentrations & Flow



#### Aspen Seep Bioreactor Influent and Effluent Zinc Concentrations & Flow



Aspen Seep Bioreactor Influent and Effluent Sulfate Concentrations & Flow

#### Sludge Management

- Sludge generated from bioreactors contains precipitated metal sulfides, aluminum hydroxide, and calcium carbonate
- The sludge needs to be managed appropriately or will simply re-oxidize and potentially release metals

#### Metal content of the sludge (dry basis)

| <u>Element</u> | <b>Concentration</b> | <u>n (mg/g)</u> |
|----------------|----------------------|-----------------|
| Fe             | 225.9                |                 |
| Mn             | 6.23                 |                 |
| Zn             | 1.34                 |                 |
| Cu             | 0.86                 |                 |
| Ni             | 0.75                 |                 |
| Ca             | 49.10                |                 |
| Al             | 49.50                |                 |
| Na             | 3.30                 |                 |
| Mg             | 9.70                 |                 |

# Comparison of STLC and TTLC standards with sludge sample results

| Element | Tests       | Standard | Sludge<br>sample |
|---------|-------------|----------|------------------|
| Cu      | STLC(mg/L)  | 25       | 0.9              |
|         | TTLC(mg/kg) | 2500     | 75               |
| Ni      | STLC(mg/L)  | 20       | 1.4              |
|         | TTLC(mg/kg) | 2000     | 60               |
| Zn      | STLC(mg/L)  | 250      | 0.60             |
|         | TTLC(mg/kg) | 5000     | 30               |

#### Cost

Average flow for Aspen Seep: flow = 32 L/min  $SO_4^{2-} = 2000 \text{ mg/L}$   $Fe_T = 100 \text{ mg/L}$ required: ethanol = 1500 gallons/year or \$3,000/year sodium hydroxide = 3150 lbs or \$2,000/year























Vital Features of Alcohol Enhanced Bioreactor

-Flushing capability

-Proper influent and effluent pH

-Elimination of ponding on the surface

-Stable flow control of alcohol and base

- Sludge capture and management