A New Technology for Acid Mine Drainage Treatment

J. Ming Zhuang, Tony Walsh NORAM Engineering and Constructors Ltd.

NORAM Engineering & Constructors Ltd.

- Specializes in the development and commercialization of chemical processes.
- Developed the worlds leading technology for the manufacture of Nitrobenzene with 6 world scale plants built and operating.
- Recent development projects include:
 - Waste-water treatment process for removing mercury and other heavy metals from groundwater.
 - Stabilisation product to stabilise leachable mercury contaminated soils.
 - Efficient compact hydrogen reformer for use in fuel cells.
- Privately owned BC company established in 1988. with approx.
 80 employees.
- 40% ownership in BC Research.

Pros and Cons of pH modification using lime

PROS

- Tried and tested
- Effective
- Unaffected by seasonal temperatures.
- Relatively simple operation procedures.
- Can accommodate change in water quality and quantity.

<u>CONS</u>

- High pH is needed to remove metals such as manganese may cause remobilization of other metal hydroxides (e.g. aluminum)
- Large amounts of lime are used. Manufacture of lime causes co2 emissions. (greenhouse gases).
- Large volumes of sludge are generated, which are expensive to handle and difficult to dispose of.
- Sludges generally have no commercial value and are commonly stored on site in storage ponds.
- Environmental liability still remains with stored sludge.

Active treatment technologies for AMD

- pH modification.
- Ion Exchange.
- Biology-based technology.
- Other adsorption technologies.
- Electrochemical technology.
- Physical process technology.

Lignor[™] - AMD Process

- Development based on a Noram technology using humic and fulvic acids for the recovery of mercury from the groundwater at a large remediation project in Squamish BC.
- The Lignor[™] Process simulates the chelating properties of humic and fulvic acids using lignin derivatives.
- Lignin derivatives/ lime/caustic soda/air oxidation. Plus optional ferric addition for further metal removal.
- Produces less sludge volume which is easily dewatered.
- Cost of reagents are reduced.

Metal Removal Trial Results

(no ferric addition)

•Effluent quality of lignor[™]-AMD process are excellent.

Metal Removal Trial Results

(Ferric addition)

Addition of Ferric reduces aluminum, improving effluent quality

Reagent costs

•Lignor[™] process has the potential to save 36% costs of reagents, over other ph modification processes.

Sludge Generation

•Lignor[™] generates >36% less sludge, than other conventional ph modification processes.

Main Point Summary

- Lab scale research and development has successfully proven the concept of the technology, and the benefits over other available technologies.
- A patent application for the Lignor[™]-amd process as been filed.
- Lignor[™]-amd process uses reagents at considerable less cost than other pH modification processes.
- Lignor[™]-amd process generates sludge that is stable and considerable less voluminous than other ph modification processes.
- Lignor[™]- amd process produces an acceptable quality effluent.

Next Steps

- Move the status of the Lignor[™]-AMD Process from an "Emerging Alternative Technology" to an "Available Alternative Technology".
- Develop and engineer a full scale 3m³/hr full scale skid mounted plant.
- Develop and implement an extensive fullscale field testing program.

APPLIED CHEMISTRY for Lignor[™] Process of AMD Treatment

Dr. J. Ming Zhuang NORAM Engineering and Constructors Ltd.

Application of Lignin Derivatives

Humic / fulvic acids (HFA) – natural chelating agent.

Lignin - one of the most important precursor of HFA.

Lignin derivatives – Kraft lignin and lignosulfonates.

The structure of softwood lignin

The Bonding Types between Metal and Lignin Derivatives

Benefits of Applying Lignin Derivatives

- Protect lime from developing an external coating on surface, and favor dissociation of hydrated lime.
- Increase particle settling efficiency by: bridging the space between particles through adsorption (Flocculation), promoting consolidation of small particles into larger particles (Coagulation).
- Immobilize metals in sludge.

The pH Relation to Metal Hydroxides Precipitation

∙pH	 Precipitation of Metal Hydro. 	xides
•5	∙Fe(Oদ্ব)	
•6	•AI(O녕)	
•7.5 – 8	•Cu(O♭)	
•8.5 - 9	•Zn(O♭)	
•9	•Fe(O♭)	
•9.5 – 10	•Cd(O♭)	
•10 – 11	∙Mn(Oঢ়ৢ৾ ৸ Mg(Oঢ়ৢৗ)	
•12	•Ca(Oᡰᢓ	

Alkali Demand of AMD

- Acidity determination by titration with caustic soda.
- Calculation of CaCO₃ equivalent for proton acid and mineral acid.

Acidity to pH 8.3 is equivalent to 480mg/L CaCO₃, or 355mg/L Ca(OH)₂.

Calculation of CaCO₃ equivalent for proton acid and mineral acid for AMD at pH 3.2

		t. Eq.Wt.	Substance to CaCO ₃ equivalent (multiply by)	AMD				
lons	M.Wt.			Sample #1 (mg/L)	Substance to CaCO ₃ equivalent	Sample #2 (mg/L)	Substance to CaCO ₃ equivalent	
Н	1	1	50.00	0.63	31.5	0.63	31.5	
AI	27	9.0	5.56	56.9	316.1	43.7	242.8	
Cd	112.4	56.2	0.89	0.100	0.1	0.098	0.1	
Со	58.9	29.5	1.70	0.161	0.3	0.137	0.2	
Cu	63.4	31.7	1.58	41.0	64.7	28.7	45.3	
Fe	55.9	18.6	2.68	17.02	45.7	8.81	23.6	
Mn	54.9	27.5	1.35	7.11	13.0	6.12	11.1	
Ni	58.7	29.4	1.26	0.1	0.2	0.088	0.1	
Pb	207.2	103.6	0.36	0.08	0.0	0.06	0.0	
Zn	65.4	32.7	1.13	19.1	29.2	18.7	28.6	
				Total CaCO ₃ eq. = 501mg/L		Total CaCO ₃ eq. = 384mg/L		
CaCO ₃ equivalent to Ca(OH) ₂ (multiply by 0.74)								
Required Ca(OH) ₂			371mg/L 284mg/L			mg/L		

Calculation of Mass Balance for Each Concerned Metal

Motolo ⁽¹⁾	AMD Sample #2 (mg/L)	Test-13 (mg/L)	Reduction		Test-13-D S ⁽²⁾		Recovery ⁽⁴⁾
metars			mg/L	%	mg/kg	mg/L ⁽³⁾	(%)
AI	43.7	0.58	- 43.1	- 98.6	80900	44.3	102.7
Ca	335 +211 ⁽⁵⁾	422	124 ⁽⁷⁾	22.7 ⁽⁷⁾	43700	23.9	19.3
Cd	0.098	0.005	- 0.093	- 94.9	179	0.098	105.4
Co	0.137	<0.005 ⁽⁶⁾	- 0.13	>- 96.4	250	0.137	100 – 104
Cu	28.7	0.03	- 28.7	- 99.9	49500	27.1	94.5
Pd	0.06	<0.02 ⁽⁶⁾	- 0.06		142	0.078	
Mg	93.1	51.7	- 41.4	- 44.5	70900	38.8	93.7
Mn	6.125	0.338	- 5.79	- 94.5	10900	5.96	103
Na	9.94	86	76 ⁽⁷⁾	7)	803	0.439	dissolved
Ni	0.088	< 0.005 ⁽⁶⁾	- 0.088	> - 94.3	169	0.092	104 – 111
Zn	18.7	0.032	- 18.7	- 99.8	32000	17.5	93.7

Note: (1) Determined by ICP method. (2) Dried Sludge (547mg/L) was collected from Test-13. (3) mg/L = mg/kg * 0.547g/L

(4) Each Metal Recovery (%) = 100*Test-13-DS / (Sample #2 – Test-13). (5) Amount of added agent.

(6) Less than Detector Limit. (7) Increased by added agents.

Metal Precipitation and pH

The Contents of [CO₃²⁻] Relation to Metal Carbonates Precipitation

[CO ₃ - ²], (mg/L)	Precipitation of Metal Carbonates
0.24	CdCO₃
0.40	ZnCO₃
0.45	MnCO₃
0.60	FeCO ₃
1.25	CuCO₃
6.53	CaCO3
19.8	MgCO₃

Metal Precipitation and pH

Air Oxidation of AMD

$$2 Mn^{2+} + 2 H_2O + O_2 \longrightarrow 2 MnO_2 + 4 H^+$$

 $4 Fe^{2+} + O_2 + 4 H^+ \longrightarrow 4 Fe^{3+} + 2 H_2O$
 $Fe^{3+} + 3 OH \longrightarrow Fe(OH)_3$

Conclusions

Lignor[™] process is composed of:

- (1) Application of lignosulfonates,
- (2) AMD neutralization by lime to about pH 7,
- (3) pH adjustment with caustic soda to 9.4 9.6,
- (4) air oxidation to drop pH to a desired level, and
- (5) small amount of $FeCl_3$ for additional removal of dissolved metals.

QUESTIONS? QUESTIONS? QUESTIONS?