BIOLOGICAL TREATMENT OF METALS AND INORGANICS IN MINING WATERS

JACK ADAMS

METAL AND INORGANIC BIOTREATMENT

- Cost effective technology to transform and remove metals and inorganics from large water volumes
- Biological metal and inorganic transformation/removal methods, in general, produce 1,000's to 10,000 times less sludge than conventional chemical precipitation technologies

BIOTREATMENT APPROACH

- Site evaluation understand site chemistry and environmental parameter interactions
- Select appropriate microorganisms for optimal performance in site waters and site conditions and conduct biotreatability testing in site waters
- Design / Engineer a bioreactor system to provide desired contaminant removals and conduct on-site pilot-scale testing

SITE EVALUATION

Seasonal or year round treatment

 Volume to be treated & treatment system size

Current and seasonal water chemistry • pH, temperature, suspended solids, etc.

- Contaminant
- Co-contaminants

Expected changes in water chemistry

BIOTREATABILITY TESTING

ARSENIC REDUCTION SCREEN

NUTRIENT/AERATION SCREEN

EPA MINE WASTE TECHNOLOGY PROGRAM VALIDATION

Se ~2.0 mg/L with low levels of Cu and As

• pH ~7.0

Flow Rate - 2 gpm

Retention Time 5.5 hr to 11 hr

Over 9 months testing

TEST SUMMARY*

- Applied Biosciences' Biological Selenium Removal process was the only technology, including ferrihydrite adsorption, to remove selenium to below discharge criteria (50 ppb) under site testing
 - The Applied Biosciences' metal removal bioprocess removed selenate and selenite to below detection
 - During the nine months of testing, the bioprocess also consistently removed low levels of copper and arsenic to below detection

*EPA Mine Waste Technology Program Final Report - Selenium

EPA ECONOMIC ANALYSIS* (Metal Removal)

	Ferrihydrite	Catalyzed	Bioprocess
Cost	<u>Adsorption</u>	Cementation	
Capital	\$1,026,835	\$1,083,285	\$603,999
Annual O&M	\$2,084,559	\$1,165,358	\$135,029
Capital and Operational			
Costs over 10 years	\$18,017,962	\$10,582,608	\$1,704,681
Total treatment costs per			
(1,000 gal)	\$13.90	\$8.17	\$1.32

*EPA Mine Waste Technology Program Final Report - Selenium (Based on 2mg/L selenium @ 300 gpm – over 10 yrs)

LANDUSKY SITE

 Nitrate ~240 mg/L • Selenium ~0.8 mg/L Cyanide ~0.7 mg/L **Solutions tons spent ore SOMINION gallons require** reatment annually Geochemisky - changing

Other contaminants Mg, Mn, Zn, SO4-2, Na, Cu. As

0H-50-22

Average Contaminant Removal

NO₃-N ~240mg/L to <10 mg/L
Se ~ 0.8 mg/L to <50 ppb
WAD CN ~0.7 mg/L to <20

100

te.

mb

e

re

ppb

Ambient wa

Treatment costs under \$1.00/1,000 gal treated

CURRENT PAD WATER MANAGEMENT

LANDUSKY SITE (FULL-SCALE)

An integrated process system using biological denitrification, biological selenium remotal and biological cyanide biooxidation has been constructed to remove these contaminants at ~8° C

LANDUSKY OPERATION

- System inoculated and on line in August 2002
 - Operational checkout September / October 2002
 - Currently finalizing system optimization
 - Removing nitrate and selenium to below discharge criteria since August 2002
 - $-NO_3$ from ~ 240 mg/L to <5 mg/L
 - -Se from ~ 0.8 mg/L to <0.002 mg/L
 - -CN from ~0.3 mg/L to 0.03 mg/L
 - Currently balancing the nutrient feed more complete CN removal and lower costs
 - System inoculated to remove other metals As, Zn, Cu, Ni, Mn, Al, Au

WASTEWATER POND

(~10 M gal - Full-scale)

Initial Values (mg/L) 2.11 As 11.7 Cu 1.7 Se

<u>Chemical/Biological</u> <u>Treatment - Pond (mg/L)</u> 0.16 0.204 Below (50 ppb)

Post Bioreactor (mg/L)

Below detection (5 ppb) 0.05 Below detection (2 ppb)

Protection of the second of th

ARSENIC / NITRATE REMOVAL

FULL-SCALE TREATMENT

Treatment costs
\$0.25/1,000 gallons
Retention time ~ 7 hr
pH ~7.0
Flow Rate - 70 to 150 gpm
Temp. ~8° C to 16° C

SUMMARY

The Applied Biosciences metal and inorganic removal process technology has been validated through the EPA's Mine Waste Technology Program and various full-scale implementations.

- Simple "pump & treat" bioreactor design
- Low nutrient costs \$0.19 to \$0.45 / 1,000 gallons
- Metal removal to below detection
- Can be configured to simultaneously remove various metal and inorganic contaminants, e.g., Se, NO₃, Cu, CN, NH₃, Ni, As, Te, Cd, Zn

ACKNOWLEDGEMENTS

- Shannon Shaw (Robertson GeoConsultants Inc.)
- Tina Maniatis (Applied Biosciences)
- Nick Heiner (Applied Biosciences)
- Anna DeBeer (Applied Biosciences)
- Tim Pickett (Applied Biosciences)

