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PRBs for Removal of Inorganic
Contaminants from Groundwater

University of Waterloo experience
Blowes, Ptacek and Robertson

Metals, nutrients and water-borne
pathogens

Plume remediation or control

J.S. Patents 5,362,394 5514279
5,876,606
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Geochemical Barriers for Metals

Zero-valent iron: reductive precipitation on grain
surfaces

Organic carbon: sulfate reduction, denitrification

BOF Slag: sorption and co-precipitation
phosphate and arsenic

U.S. Patents 5,362,394 5,514,279 5,876,606
Activated carbon
Limestone (neutralization)



PRBs for Inorganic Contaminants
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Contaminants Treated
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Zero-Valent Iron for Electroactive
Metals

Field Installation: Chromium (VI),
Elizabeth City, NC

Radionuclides (DOE Facilities)
Arsenic, selenium, mercury

Reductive precipitation on grain
surfaces; precipitation or co-
precipitation
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Elizabeth City Site

U.S. EPA Project

e Reference

 Blowes, D.W., et al., 1999. An In-Situ Permeable
Reactive Barrier for the Treatment of Hexavalent
Chromium and Trichloroethylene in Ground
Water: Volume 1 Design and Installation. Volume
2 Performance Monitoring. Volume 3
Multicomponent Reactive Transport Modeling
United States Environmental Protection Agency,
Cincinnati, OH, Report EPA/600/R-99/095abc.
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http://www.epa.gov/ada/pubs/reports.html
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Reactive Material

e 150 m3 zero valent iron (280 tons)
e 46 m long, 7.3 m deep and 0.6 m wide barrier
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One-Pass Continuous Trencher
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ne-Pass Continuous

Trencher

Depths of < 30 ft
Width 1-2 ft

Very rapid installation
Big equipment
Mobilization
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Mineralogical Characterization

* Increased solid-phase carbon
e« Carbonate mineralogy

e Iron oxyhydroxides
e goethite
 ferrihydrite
e green rust

e I[ron Sulfides
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ARSENIC

Mechanisms for Removal
1) Reduction and Co-precipitation with Goethite

|) 4F€0(S) + 302(9) + 6H20(|) R 4F€3+ + 120H_ (aq)

(aq)

i) Fe3* g + H3AsOgy + 2H,0) & FeO(OH,H,AsO,) ) + 5H*

(aq) (aq)

2) Sulphate Reduction

i) 4Fe0 + SO,2 o + 10H* .y & H,S + 4Fe?  + 4H,0,

(aq) (aq)

i) 2A8%* 5 + 3H,S 0 ® AS,Sy) + 6H?

(aq) (aq)

3) Adsorption
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McRae (1999):. Arsenic Removal
Mechanisms

 Energy Dispersive X-Ray Analysis

 As present in grain coatings and
possibly on zero-valent iron grain
surface

 X-Ray Photoelectron Spectroscopy
 As(lll) predominant in solid phase

 Reductive precipitation and co-
precipitation with goethite in coatings
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Total Arsenic Concentration Profiles in ZVI Column
Mine Groundwater at Velocity of 6.75 cm/day
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Sulfate-Reduction PRBs

Metals in sulfate rich water- AMD

Sulfate reduction is microbially mediated
process

Purpose of PRB Is to intercept
groundwater flow and enhance sulfate
reduction

Generation of H,S and precipitation of
metal sulfide minerals

Decrease acid-generating potential;
remove dissolved metals
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Acid Mine Drainage and Sulfate Reduction

Tailings Dam

Fe2* 1/40, + 5/2H,0 => Fe(OH)4(s)+2H*
IR = == mmT TS

=> Fe?* + 28042- + 2H* <>Z
Reactive Wall

SO, + 2CH,0 => H,S +2HCO

FeS,(s) + 7/20, + H

Fe?* + H,S =>FeS + 2H"
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Nickel Rim Mine, Sudbury, ON

Laboratory batch and column study

Predictive groundwater flow
modelling

Field installation (1995)
Benner et al., 1997; 1999
Waybrant et al., 1998
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Reactive Mixture Composition for
PRB

We e)el Limestone
Cnios
LLear:
Compost ( Municipal
Compost
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Porous Reactive Wall Installation
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Groundwater Flow

q reactive
sand material Sand
\ [

surface water recharge i

Chloride (mg/l_) groundwater flow direction
No)VARCS)

I >350
BN 250-350
I 150-249
N 50-149
B <50

Chloride (mg/L)

June 96

I >350
BN 250-350
B 150-249
B 50-149
B <50

meters

Benner et al., 1997
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Treatment Results
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Sulfate Reduction in PRB

Decreasing sulfate concentrations
Sulfate-reducing bacteria
Dissolved sulfide present

Isotopic enrichment of 34S in remnant
sulfate

Iron monosulfides identified in cores
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Sulfide Accumulation in Nickel
Rim PRB (Daignault 2002, UW B.Sc.Thesis)
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Summary of Nickel Rim PRB

 The reactive wall iIs removing significant
portion of the dissolved iron from the
plume; full treatment would have required
thicker PRB with longer residence time

« Reduced flux of contaminants In
groundwater; reduced acid-generating
potential of groundwater in receiving
surface water

e Cost for materials and installation
approximately $25 K (US) in 1995

@ University of Waterloo 2002



Issues

 Heterogeneities in PRB/ residence
time of contaminated groundwater In
PRB is critical to level of treatment
achieved

« Some loss of reactivity with time;
sustained availability of organic
carbon

* Influence of temperature in shallow
PRB systems
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STEEL PRODUCTION WASTES

Basic Oxygen Furnace (BOF) Slag

e Steel production waste product

Used as aggregate for construction

High Ca and Fe oxides and
nydroxides

nteraction with water: high pH

Removal of phosphate (Baker et al.,
1997, 1998) and arsenic(McRae et al.,
1999)
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Solid Reactive Mixtures

Reactive Materials
Aquifer Materials |
BOF-Oxide
Silica
Sand

Zero Valent Iron

Activated
Alumina

Limestone
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Second Column Test

50 % BOF slag/ 50 % gravel

 Low pH site groundwater with 4 mg/L
arsenic

* More than 75 pore volumes of flow
(velocity of 0.3 m/day)

e Total arsenic concentration In
effluent less than 0.01 mg/L



Arsenic Removal by BOF Slag

* Removal of arsenic oxyanions by
sorption iron and manganese
oxyhydroxides in BOF

* Removal to low levels (<0.005 mg/L
total arsenic)

e Sustained performance for 100 pore
volumes of 10 % BOF mixture



North Bay System: pH with Time
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E-Coli (CFU per 100 mL)

North Bay System: E-Coli with Time
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BOF-Chamber Performance

o Effective removal of phosphorus

o Effective removal of E-Coli
 Elevated pH provides environment that
eliminates bacteria
 Elevated pH of 12 or higher

e Elevated pH is buffered by soils and sediments
upon release to subsurface

 pH of groundwater approximately 1 m down-
gradient of discharge gallery was 6.2to 7
(August 2000)
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Zero-Valent Iron and Other
Reactive Materials

Excellent removal of electroactive
metals

Sulfate reduction and AMD treatment
Excellent treatment of nutrients
Performance of field-scale applications
Removal mechanisms

Reactive capacity

Formation of secondary precipitates
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