# Metals Removal from Groundwater Using Permeable Reactive Barriers (PRBs)

### David J.A. Smyth<sup>1</sup>, David W. Blowes<sup>1</sup>, Carol J. Ptacek<sup>1</sup>, Jeff G. Bain<sup>1</sup>

Department of Earth Sciences, University of Waterloo Waterloo, ON, N2L 3G1, Canada BC MLARD Workshop, December 2002







## PRBs for Removal of Inorganic Contaminants from Groundwater

- University of Waterloo experience
- Blowes, Ptacek and Robertson
- Metals, nutrients and water-borne pathogens
- Plume remediation or control
- U.S. Patents 5,362,394 5,514,279
  5,876,606



#### **Geochemical Barriers for Metals**

- Zero-valent iron: reductive precipitation on grain surfaces
- Organic carbon: sulfate reduction, denitrification
- BOF Slag: sorption and co-precipitation phosphate and arsenic
- U.S. Patents 5,362,394 5,514,279 5,876,606
- Activated carbon
- Limestone (neutralization)

## **PRBs for Inorganic Contaminants**

#### **Pilot Scale Installations**

#### **Full-Scale PRB Installations**



## **Inorganic PRB Sites**



## **Contaminants Treated**

#### **Pilot Scale Installations Full-Scale PRB Installations** Arsenic **Metals Metals** and Arsenic and AMD AMD PO<sub>4</sub> Cr(VI) Cr(VI) $PO_4$ U U NO<sub>3</sub>

## Zero-Valent Iron for Electroactive Metals

- Field Installation: Chromium (VI), Elizabeth City, NC
- Radionuclides (DOE Facilities)
- Arsenic, selenium, mercury
- Reductive precipitation on grain surfaces; precipitation or coprecipitation



#### Elizabeth City Site U.S. EPA Project

- Reference
  - Blowes, D.W., et al., 1999. An *In-Situ* Permeable Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Ground Water: Volume 1 Design and Installation. Volume 2 Performance Monitoring. Volume 3 Multicomponent Reactive Transport Modeling United States Environmental Protection Agency, Cincinnati, OH, Report EPA/600/R-99/095abc.
  - http://www.epa.gov/ada/pubs/reports.html





C University of Waterloo 2002

T.A. Bennett, M.Sc. Thesis, University of Waterloo, 1997

#### **Reactive Material**

- 150 m<sup>3</sup> zero valent iron (280 tons)
- 46 m long, 7.3 m deep and 0.6 m wide barrier



### **One-Pass Continuous Trencher**







# One-Pass Continuous Trencher

- Depths of < 30 ft
- Width 1-2 ft
- Very rapid installation
- Big equipment
- Mobilization



## **USCG Wall Installation**







Groundwater flow direction

0 50 cm

#### **Transect 1 (November 1996)**

© University of Waterloo 2002

T.A. Bennett, M.Sc. Thesis, University of Waterloo, 1997



Groundwater flow direction



**Transect 1 (November 1996)** 

C University of Waterloo 2002

T.A. Bennett, M.Sc. Thesis, University of Waterloo, 1997

### **Mineralogical Characterization**

- Increased solid-phase carbon
  - Carbonate mineralogy
- Iron oxyhydroxides
  - goethite
  - ferrihydrite
  - green rust
- Iron Sulfides



## Long-Term Efficiency (Mayer)



## ARSENIC

#### **Mechanisms for Removal**

- 1) Reduction and Co-precipitation with Goethite
  - i)  $4Fe_{(s)}^{0} + 3O_{2(g)} + 6H_{2}O_{(l)} + 4Fe_{(aq)}^{3+} + 120H_{(aq)}^{-}$
  - ii)  $Fe^{3+}_{(aq)} + H_3AsO_{3(aq)} + 2H_2O_{(I)}$   $FeO(OH, H_2AsO_4)_{(s)} + 5H^+_{(aq)}$

#### 2) Sulphate Reduction

i)  $4Fe_{(s)}^{0} + SO_{4}^{2-}_{(aq)} + 10H_{(aq)}^{+} R H_{2}S_{(aq)} + 4Fe_{(aq)}^{2+} + 4H_{2}O_{(l)}$ ii)  $2As_{(aq)}^{3+} + 3H_{2}S_{(aq)}^{-} R As_{2}S_{3(s)}^{-} + 6H_{(aq)}^{+}$ 

#### 3) Adsorption

C University of Waterloo 2002

## McRae (1999): Arsenic Removal Mechanisms

- Energy Dispersive X-Ray Analysis
  - As present in grain coatings and possibly on zero-valent iron grain surface
- X-Ray Photoelectron Spectroscopy
  - As(III) predominant in solid phase
  - Reductive precipitation and coprecipitation with goethite in coatings



### Column Experiments

1007 E

C University of Waterloo 2002

#### **Zero Valent Iron Column**





# Arsenic Concentration in 100% Iron Column



#### **Total Arsenic Concentration Profiles in ZVI Column**

Mine Groundwater at Velocity of 6.75 cm/day



## **Sulfate-Reduction PRBs**

- Metals in sulfate rich water- AMD
- Sulfate reduction is microbially mediated process
- Purpose of PRB is to intercept groundwater flow and enhance sulfate reduction
- Generation of H<sub>2</sub>S and precipitation of metal sulfide minerals
- Decrease acid-generating potential; remove dissolved metals



### **Acid Mine Drainage and Sulfate Reduction**



 $Fe^{2+} + H_2S => FeS + 2H^+$ 



### Nickel Rim Mine, Sudbury, ON

- Laboratory batch and column study
- Predictive groundwater flow
  modelling
- Field installation (1995)
- Benner et al., 1997; 1999
- Waybrant et al., 1998



## Reactive Mixture Composition for PRB





#### **Porous Reactive Wall Installation**





## **Nickel Rim Wall Materials**

© University of Waterloo

# **NR Wall Installation**

© University of Waterloo

## Nickel Rim Wall







© University of Waterloo

## **Nickel Rim Wall**

# **Clay Cap**

© University of Waterloo

#### **Groundwater Flow**



C University of Waterloo 2002

Benner et al., 1997

#### **Treatment Results**



C University of Waterloo 2002

Benner et al., 1997

#### **Sulfate Reduction in PRB**

- Decreasing sulfate concentrations
- Sulfate-reducing bacteria
- Dissolved sulfide present
- Isotopic enrichment of <sup>34</sup>S in remnant sulfate
- Iron monosulfides identified in cores





meters

5



meters

5

## Sulfide Accumulation in Nickel Rim PRB (Daignault 2002, UW B.Sc.Thesis)



### **Summary of Nickel Rim PRB**

- The reactive wall is removing significant portion of the dissolved iron from the plume; full treatment would have required thicker PRB with longer residence time
- Reduced flux of contaminants in groundwater; reduced acid-generating potential of groundwater in receiving surface water
- Cost for materials and installation approximately \$25 K (US) in 1995



#### Issues

- Heterogeneities in PRB/ residence time of contaminated groundwater in PRB is critical to level of treatment achieved
- Some loss of reactivity with time; sustained availability of organic carbon
- Influence of temperature in shallow PRB systems



## STEEL PRODUCTION WASTES Basic Oxygen Furnace (BOF) Slag

- Steel production waste product
- Used as aggregate for construction
- High Ca and Fe oxides and hydroxides
- Interaction with water: high pH
- Removal of phosphate (Baker et al., 1997; 1998) and arsenic(McRae et al., 1999)





#### **Reactive Materials**

#### Silica Sand



#### **Zero Valent Iron**

**BOF-Oxide** 

## Limestone

**Aquifer Materials** 

#### Activated Alumina

#### **Batch Removal Rates**



**Iron Slag** 

#### **BOF Slag Column**



#### **Second Column Test**

- 50 % BOF slag/ 50 % gravel
- Low pH site groundwater with 4 mg/L arsenic
- More than 75 pore volumes of flow (velocity of 0.3 m/day)
- Total arsenic concentration in effluent less than 0.01 mg/L

#### **Arsenic Removal by BOF Slag**

- Removal of arsenic oxyanions by sorption iron and manganese oxyhydroxides in BOF
- Removal to low levels (<0.005 mg/L total arsenic)
- Sustained performance for 100 pore volumes of 10 % BOF mixture

#### North Bay System: pH with Time



#### North Bay System: E-Coli with Time



**Days of Operation** 

E-Coli in Raw Water
 E-Coli in Sand Filter

- E-Coli in BOF Filter

### **BOF-Chamber Performance**

- Effective removal of phosphorus
- Effective removal of E-Coli
  - Elevated pH provides environment that eliminates bacteria
- Elevated pH of 12 or higher
  - Elevated pH is buffered by soils and sediments upon release to subsurface
  - pH of groundwater approximately 1 m downgradient of discharge gallery was 6.2 to 7 (August 2000)



## Zero-Valent Iron and Other Reactive Materials

- Excellent removal of electroactive metals
- Sulfate reduction and AMD treatment
- Excellent treatment of nutrients
- Performance of field-scale applications
- Removal mechanisms
- Reactive capacity
- Formation of secondary precipitates

